These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I. Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [Abstract] [Full Text] [Related]
3. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Azami M, Moosavifar MJ, Baheiraei N, Moztarzadeh F, Ai J. J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752 [Abstract] [Full Text] [Related]
4. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Sundaram J, Durance TD, Wang R. Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862 [Abstract] [Full Text] [Related]
5. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Colloids Surf B Biointerfaces; 2009 Nov 01; 74(1):159-66. PubMed ID: 19679453 [Abstract] [Full Text] [Related]
6. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR. J Biomed Mater Res A; 2015 May 01; 103(5):1882-92. PubMed ID: 25195588 [Abstract] [Full Text] [Related]
7. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Kim HW, Knowles JC, Kim HE. J Biomed Mater Res A; 2005 Feb 01; 72(2):136-45. PubMed ID: 15549783 [Abstract] [Full Text] [Related]
8. Bioactive porous titanium: an alternative to surgical implants. de Medeiros WS, de Oliveira MV, Pereira LC, de Andrade MC. Artif Organs; 2008 Apr 01; 32(4):277-82. PubMed ID: 18370941 [Abstract] [Full Text] [Related]
9. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW, Kim HE, Salih V. Biomaterials; 2005 Sep 01; 26(25):5221-30. PubMed ID: 15792549 [Abstract] [Full Text] [Related]
10. Surface characterization of dental implants coated with hydroxyapatite by plasma spray and biomimetic process. Vidigal GM, Groisman M, de Sena LA, Soares Gde A. Implant Dent; 2009 Aug 01; 18(4):353-61. PubMed ID: 19667824 [Abstract] [Full Text] [Related]
11. Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue. Bellucci D, Sola A, Gentile P, Ciardelli G, Cannillo V. J Biomed Mater Res A; 2012 Dec 01; 100(12):3259-66. PubMed ID: 22733576 [Abstract] [Full Text] [Related]
12. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite. Nayar S, Sinha A. Colloids Surf B Biointerfaces; 2004 May 01; 35(1):29-32. PubMed ID: 15261052 [Abstract] [Full Text] [Related]
13. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H. J Biomed Mater Res A; 2010 Mar 15; 92(4):1244-55. PubMed ID: 19322878 [Abstract] [Full Text] [Related]
14. Biomineralized porous composite scaffolds prepared by chemical synthesis for bone tissue regeneration. Raucci MG, D'Antò V, Guarino V, Sardella E, Zeppetelli S, Favia P, Ambrosio L. Acta Biomater; 2010 Oct 15; 6(10):4090-9. PubMed ID: 20417736 [Abstract] [Full Text] [Related]
15. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials. Alonso-Sierra S, Velázquez-Castillo R, Millán-Malo B, Nava R, Bucio L, Manzano-Ramírez A, Cid-Luna H, Rivera-Muñoz EM. Mater Sci Eng C Mater Biol Appl; 2017 Nov 01; 80():45-53. PubMed ID: 28866187 [Abstract] [Full Text] [Related]
16. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. Verma D, Katti K, Katti D. J Biomed Mater Res A; 2006 Sep 15; 78(4):772-80. PubMed ID: 16739180 [Abstract] [Full Text] [Related]
17. Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute. Sionkowska A, Kozłowska J. Int J Biol Macromol; 2010 Nov 01; 47(4):483-7. PubMed ID: 20637799 [Abstract] [Full Text] [Related]
18. An efficient biomimetic coating methodology for a prosthetic alloy. Adawy A, Abdel-Fattah WI. Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1813-8. PubMed ID: 23827641 [Abstract] [Full Text] [Related]
19. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL. J Biomed Mater Res A; 2009 Oct 01; 91(1):175-86. PubMed ID: 18780358 [Abstract] [Full Text] [Related]
20. Biomimetic growth of hydroxyapatite on phosphorylated electrospun cellulose nanofibers. Li K, Wang J, Liu X, Xiong X, Liu H. Carbohydr Polym; 2012 Nov 06; 90(4):1573-81. PubMed ID: 22944418 [Abstract] [Full Text] [Related] Page: [Next] [New Search]