These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 21724325
1. Acidic leaching both of zinc and iron from basic oxygen furnace sludge. Trung ZH, Kukurugya F, Takacova Z, Orac D, Laubertova M, Miskufova A, Havlik T. J Hazard Mater; 2011 Sep 15; 192(3):1100-7. PubMed ID: 21724325 [Abstract] [Full Text] [Related]
3. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid. Oustadakis P, Tsakiridis PE, Katsiapi A, Agatzini-Leonardou S. J Hazard Mater; 2010 Jul 15; 179(1-3):1-7. PubMed ID: 20129730 [Abstract] [Full Text] [Related]
4. Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. Sammut ML, Rose J, Masion A, Fiani E, Depoux M, Ziebel A, Hazemann JL, Proux O, Borschneck D, Noack Y. Chemosphere; 2008 Feb 15; 70(11):1945-51. PubMed ID: 18054988 [Abstract] [Full Text] [Related]
5. Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. Silva JE, Soares D, Paiva AP, Labrincha JA, Castro F. J Hazard Mater; 2005 May 20; 121(1-3):195-202. PubMed ID: 15885422 [Abstract] [Full Text] [Related]
6. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning. Tsakiridis PE, Oustadakis P, Katsiapi A, Agatzini-Leonardou S. J Hazard Mater; 2010 Jul 15; 179(1-3):8-14. PubMed ID: 20434263 [Abstract] [Full Text] [Related]
7. Leaching of the fine fraction of the argon oxygen decarburization with lance (AOD-L) sludge for the preferential removal of iron. Majuste D, Mansur MB. J Hazard Mater; 2009 Feb 15; 162(1):356-64. PubMed ID: 18579293 [Abstract] [Full Text] [Related]
8. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust. Fernández-Olmo I, Lasa C, Irabien A. J Hazard Mater; 2007 Jun 18; 144(3):720-4. PubMed ID: 17324503 [Abstract] [Full Text] [Related]
9. Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants. Sayilgan E, Kukrer T, Yigit NO, Civelekoglu G, Kitis M. J Hazard Mater; 2010 Jan 15; 173(1-3):137-43. PubMed ID: 19744786 [Abstract] [Full Text] [Related]
10. Recycling of sludge with the Aqua Reci process. Stendahl K, Jäfverström S. Water Sci Technol; 2004 Jan 15; 49(10):233-40. PubMed ID: 15259960 [Abstract] [Full Text] [Related]
11. Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge. Huang Z, Xie F, Ma Y. J Hazard Mater; 2011 Jan 15; 185(1):155-61. PubMed ID: 20932641 [Abstract] [Full Text] [Related]
12. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust. Pickles CA. J Hazard Mater; 2010 Jul 15; 179(1-3):309-17. PubMed ID: 20356673 [Abstract] [Full Text] [Related]
13. Iron recovery from the coarse fraction of basic oxygen furnace sludge. Part I: optimization of acid leaching conditions. Maia LC, Dos Santos GR, Gurgel LVA, de Freitas Carvalho C. Environ Sci Pollut Res Int; 2020 Nov 15; 27(32):40135-40147. PubMed ID: 32661969 [Abstract] [Full Text] [Related]
14. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite. Khanmohammadi Hazaveh P, Karimi S, Rashchi F, Sheibani S. Ecotoxicol Environ Saf; 2020 Oct 01; 202():110893. PubMed ID: 32615495 [Abstract] [Full Text] [Related]
15. Oxidation of high iron content electroplating sludge in supercritical water: stabilization of zinc and chromium. Zhang B, Wang Y, Tang X, Wang S, Wei C, Wang R, Zhang W. Environ Sci Pollut Res Int; 2019 May 01; 26(15):15001-15010. PubMed ID: 30919180 [Abstract] [Full Text] [Related]
16. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid. Kuan YC, Lee IH, Chern JM. J Hazard Mater; 2010 May 15; 177(1-3):881-6. PubMed ID: 20079970 [Abstract] [Full Text] [Related]
17. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study. Liu CC, Wang MK, Chiou CS, Li YS, Yang CY, Lin YA. J Hazard Mater; 2009 Nov 15; 171(1-3):386-92. PubMed ID: 19586716 [Abstract] [Full Text] [Related]
18. Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation--a laboratory feasibility study. Tsai TT, Kao CM, Hong A. J Hazard Mater; 2009 Nov 15; 171(1-3):571-6. PubMed ID: 19586715 [Abstract] [Full Text] [Related]
19. Clarified sludge (basic oxygen furnace sludge)--an adsorbent for removal of Pb(II) from aqueous solutions--kinetics, thermodynamics and desorption studies. Naiya TK, Bhattacharya AK, Das SK. J Hazard Mater; 2009 Oct 15; 170(1):252-62. PubMed ID: 19520500 [Abstract] [Full Text] [Related]
20. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery. Acelas NY, López DP, Brilman DW, Kersten SR, Kootstra AM. Bioresour Technol; 2014 Dec 15; 174():167-75. PubMed ID: 25463796 [Abstract] [Full Text] [Related] Page: [Next] [New Search]