These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 21726382

  • 21. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici.
    Thomashow LS, Weller DM.
    J Bacteriol; 1988 Aug; 170(8):3499-508. PubMed ID: 2841289
    [Abstract] [Full Text] [Related]

  • 22. Genome Mining and Evaluation of the Biocontrol Potential of Pseudomonas fluorescens BRZ63, a New Endophyte of Oilseed Rape (Brassica napus L.) against Fungal Pathogens.
    Chlebek D, Pinski A, Żur J, Michalska J, Hupert-Kocurek K.
    Int J Mol Sci; 2020 Nov 19; 21(22):. PubMed ID: 33228091
    [Abstract] [Full Text] [Related]

  • 23. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0.
    de Werra P, Péchy-Tarr M, Keel C, Maurhofer M.
    Appl Environ Microbiol; 2009 Jun 19; 75(12):4162-74. PubMed ID: 19376896
    [Abstract] [Full Text] [Related]

  • 24. GmPGIP3 enhanced resistance to both take-all and common root rot diseases in transgenic wheat.
    Wang A, Wei X, Rong W, Dang L, Du LP, Qi L, Xu HJ, Shao Y, Zhang Z.
    Funct Integr Genomics; 2015 May 19; 15(3):375-81. PubMed ID: 25487419
    [Abstract] [Full Text] [Related]

  • 25. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici.
    Maciá-Vicente JG, Jansson HB, Mendgen K, Lopez-Llorca LV.
    Can J Microbiol; 2008 Aug 19; 54(8):600-9. PubMed ID: 18772922
    [Abstract] [Full Text] [Related]

  • 26. The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all.
    Wang M, Xing Y, Wang J, Xu Y, Wang G.
    Can J Microbiol; 2014 Aug 19; 60(8):533-40. PubMed ID: 25093749
    [Abstract] [Full Text] [Related]

  • 27. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R.
    Hamdan H, Weller DM, Thomashow LS.
    Appl Environ Microbiol; 1991 Nov 19; 57(11):3270-7. PubMed ID: 1838240
    [Abstract] [Full Text] [Related]

  • 28. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.
    Daval S, Lebreton L, Gracianne C, Guillerm-Erckelboudt AY, Boutin M, Marchi M, Gazengel K, Sarniguet A.
    Fungal Genet Biol; 2013 Dec 19; 61():80-9. PubMed ID: 24120452
    [Abstract] [Full Text] [Related]

  • 29. Rhizosphere microflora and colonization of wheat roots by Gaeumannomyces graminis var. tritici after foliar application of urea and benomyl.
    Vraný J, Stanĕk M, Vancura V.
    Folia Microbiol (Praha); 1980 Dec 19; 25(6):476-82. PubMed ID: 6777280
    [Abstract] [Full Text] [Related]

  • 30. Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington state.
    Kwak YS, Bakker PA, Glandorf DC, Rice JT, Paulitz TC, Weller DM.
    Phytopathology; 2009 May 19; 99(5):472-9. PubMed ID: 19351242
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus.
    Litvintseva AP, Henson JM.
    Appl Environ Microbiol; 2002 Mar 19; 68(3):1305-11. PubMed ID: 11872481
    [Abstract] [Full Text] [Related]

  • 35. The role of dsbA in colonization of the wheat rhizosphere by Pseudomonas fluorescens Q8r1-96.
    Mavrodi OV, Mavrodi DV, Park AA, Weller DM, Thomashow LS.
    Microbiology (Reading); 2006 Mar 19; 152(Pt 3):863-872. PubMed ID: 16514165
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici.
    Zhang X, Chen X, Qiao X, Fan X, Huo X, Zhang D.
    J Sep Sci; 2021 Feb 19; 44(4):931-940. PubMed ID: 33326164
    [Abstract] [Full Text] [Related]

  • 38. Novel Fungicide 4-Chlorocinnamaldehyde Thiosemicarbazide (PMDD) Inhibits Laccase and Controls the Causal Agent of Take-All Disease in Wheat, Gaeumannomyces graminis var. tritici.
    Wang Z, Peng Q, Gao X, Zhong S, Fang Y, Yang X, Ling Y, Liu X.
    J Agric Food Chem; 2020 May 13; 68(19):5318-5326. PubMed ID: 32356426
    [Abstract] [Full Text] [Related]

  • 39. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease.
    Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z.
    J Exp Bot; 2013 May 13; 64(8):2243-53. PubMed ID: 23547108
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.