These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 21727312

  • 21. Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces.
    Tamjid E, Simchi A, Dunlop JW, Fratzl P, Bagheri R, Vossoughi M.
    J Biomed Mater Res A; 2013 Oct; 101(10):2796-807. PubMed ID: 23463703
    [Abstract] [Full Text] [Related]

  • 22. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX, Ren J, Chen C, Ren TB, Zhou XY.
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [Abstract] [Full Text] [Related]

  • 23. Scaffold fabrication by indirect three-dimensional printing.
    Lee M, Dunn JC, Wu BM.
    Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652
    [Abstract] [Full Text] [Related]

  • 24. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.
    Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E.
    Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125
    [Abstract] [Full Text] [Related]

  • 25. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP.
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [Abstract] [Full Text] [Related]

  • 26. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S.
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [Abstract] [Full Text] [Related]

  • 27. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A, Bártolo PJ.
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [Abstract] [Full Text] [Related]

  • 28. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds.
    Rajagopalan S, Robb RA.
    Med Image Anal; 2006 Oct; 10(5):693-712. PubMed ID: 16890007
    [Abstract] [Full Text] [Related]

  • 29. Engineered tissue scaffolds with variational porous architecture.
    Khoda AK, Ozbolat IT, Koc B.
    J Biomech Eng; 2011 Jan; 133(1):011001. PubMed ID: 21186891
    [Abstract] [Full Text] [Related]

  • 30. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].
    Wei X, Dong F.
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Dec; 25(12):1508-12. PubMed ID: 22242356
    [Abstract] [Full Text] [Related]

  • 31. Multifunctional protein-encapsulated polycaprolactone scaffolds: fabrication and in vitro assessment for tissue engineering.
    Ozkan S, Kalyon DM, Yu X, McKelvey CA, Lowinger M.
    Biomaterials; 2009 Sep; 30(26):4336-47. PubMed ID: 19481253
    [Abstract] [Full Text] [Related]

  • 32. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [Abstract] [Full Text] [Related]

  • 33. Computer-designed nano-fibrous scaffolds.
    Smith LA, Ma PX.
    Methods Mol Biol; 2012 May; 868():125-34. PubMed ID: 22692608
    [Abstract] [Full Text] [Related]

  • 34. PAM2 (piston assisted microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds.
    Tirella A, Vozzi F, Vozzi G, Ahluwalia A.
    Tissue Eng Part C Methods; 2011 Feb; 17(2):229-37. PubMed ID: 20799910
    [Abstract] [Full Text] [Related]

  • 35. Evaluation of scaffolds based on α-tricalcium phosphate cements for tissue engineering applications.
    Machado JL, Giehl IC, Nardi NB, dos Santos LA.
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1814-9. PubMed ID: 21342838
    [Abstract] [Full Text] [Related]

  • 36. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction.
    Li MG, Tian XY, Chen XB.
    Biofabrication; 2009 Sep; 1(3):032001. PubMed ID: 20811104
    [Abstract] [Full Text] [Related]

  • 37. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C, Ramaswamy Y, Zreiqat H.
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [Abstract] [Full Text] [Related]

  • 38. Comparison of different fabrication techniques used for processing 3-dimensional, porous, biodegradable scaffolds from modified starch for bone tissue engineering.
    Kunjachan V, Subramanian A, Hanna M, Guan JJ.
    Biomed Sci Instrum; 2004 Jun; 40():129-35. PubMed ID: 15133947
    [Abstract] [Full Text] [Related]

  • 39. Porous scaffold design for tissue engineering.
    Hollister SJ.
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [Abstract] [Full Text] [Related]

  • 40. Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.
    He J, Wang Y, Liu Y, Li D, Jin Z.
    Biofabrication; 2013 Jun; 5(2):025002. PubMed ID: 23443621
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.