These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
884 related items for PubMed ID: 21728337
1. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S, Mikulskis P, Hu L, Kongsted J, Söderhjelm P, Ryde U. J Am Chem Soc; 2011 Aug 24; 133(33):13081-92. PubMed ID: 21728337 [Abstract] [Full Text] [Related]
3. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Genheden S, Ryde U. Proteins; 2012 May 24; 80(5):1326-42. PubMed ID: 22274991 [Abstract] [Full Text] [Related]
4. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. Levy RM, Zhang LY, Gallicchio E, Felts AK. J Am Chem Soc; 2003 Aug 06; 125(31):9523-30. PubMed ID: 12889983 [Abstract] [Full Text] [Related]
5. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding. Katkova EV, Onufriev AV, Aguilar B, Sulimov VB. J Mol Graph Model; 2017 Mar 06; 72():70-80. PubMed ID: 28064081 [Abstract] [Full Text] [Related]
6. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy. Gauto DF, Di Lella S, Guardia CM, Estrin DA, Martí MA. J Phys Chem B; 2009 Jun 25; 113(25):8717-24. PubMed ID: 19485380 [Abstract] [Full Text] [Related]
7. Nonpolar Solvation Free Energies of Protein-Ligand Complexes. Genheden S, Kongsted J, Söderhjelm P, Ryde U. J Chem Theory Comput; 2010 Nov 09; 6(11):3558-68. PubMed ID: 26617102 [Abstract] [Full Text] [Related]
9. Continuum solvation models in the linear interaction energy method. Carlsson J, Andér M, Nervall M, Aqvist J. J Phys Chem B; 2006 Jun 22; 110(24):12034-41. PubMed ID: 16800513 [Abstract] [Full Text] [Related]
11. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer. Freedman H, Huynh LP, Le L, Cheatham TE, Tuszynski JA, Truong TN. J Phys Chem B; 2010 Feb 18; 114(6):2227-37. PubMed ID: 20099932 [Abstract] [Full Text] [Related]
12. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution. Tang E, Di Tommaso D, de Leeuw NH. Phys Chem Chem Phys; 2010 Nov 07; 12(41):13804-15. PubMed ID: 20862433 [Abstract] [Full Text] [Related]
15. Polarizable water networks in ligand-metalloprotein recognition. Impact on the relative complexation energies of Zn-dependent phosphomannose isomerase with D-mannose 6-phosphate surrogates. Gresh N, de Courcy B, Piquemal JP, Foret J, Courtiol-Legourd S, Salmon L. J Phys Chem B; 2011 Jun 30; 115(25):8304-16. PubMed ID: 21650197 [Abstract] [Full Text] [Related]
17. An MM/3D-RISM approach for ligand binding affinities. Genheden S, Luchko T, Gusarov S, Kovalenko A, Ryde U. J Phys Chem B; 2010 Jul 01; 114(25):8505-16. PubMed ID: 20524650 [Abstract] [Full Text] [Related]
18. Hydration in discrete water. A mean field, cellular automata based approach to calculating hydration free energies. Setny P, Zacharias M. J Phys Chem B; 2010 Jul 08; 114(26):8667-75. PubMed ID: 20552986 [Abstract] [Full Text] [Related]
19. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation. Pei J, Wang Q, Zhou J, Lai L. Proteins; 2004 Dec 01; 57(4):651-64. PubMed ID: 15390269 [Abstract] [Full Text] [Related]