These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 21730292
1. Hypoxia leads to Na,K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Gusarova GA, Trejo HE, Dada LA, Briva A, Welch LC, Hamanaka RB, Mutlu GM, Chandel NS, Prakriya M, Sznajder JI. Mol Cell Biol; 2011 Sep; 31(17):3546-56. PubMed ID: 21730292 [Abstract] [Full Text] [Related]
2. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, Schumacker PT. Mol Cell Biol; 2011 Sep; 31(17):3531-45. PubMed ID: 21670147 [Abstract] [Full Text] [Related]
3. Alpha1-AMP-activated protein kinase regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Gusarova GA, Dada LA, Kelly AM, Brodie C, Witters LA, Chandel NS, Sznajder JI. Mol Cell Biol; 2009 Jul; 29(13):3455-64. PubMed ID: 19380482 [Abstract] [Full Text] [Related]
4. AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. Vadász I, Dada LA, Briva A, Trejo HE, Welch LC, Chen J, Tóth PT, Lecuona E, Witters LA, Schumacker PT, Chandel NS, Seeger W, Sznajder JI. J Clin Invest; 2008 Feb; 118(2):752-62. PubMed ID: 18188452 [Abstract] [Full Text] [Related]
5. Store-operated Ca2+ entry (SOCE) induced by protease-activated receptor-1 mediates STIM1 protein phosphorylation to inhibit SOCE in endothelial cells through AMP-activated protein kinase and p38β mitogen-activated protein kinase. Sundivakkam PC, Natarajan V, Malik AB, Tiruppathi C. J Biol Chem; 2013 Jun 07; 288(23):17030-17041. PubMed ID: 23625915 [Abstract] [Full Text] [Related]
6. Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y. Proc Natl Acad Sci U S A; 2012 May 29; 109(22):8682-7. PubMed ID: 22586105 [Abstract] [Full Text] [Related]
7. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M. J Physiol; 2008 Nov 15; 586(22):5383-401. PubMed ID: 18832420 [Abstract] [Full Text] [Related]
8. CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines. Ma Y, Yang F, Wang Y, Du Z, Liu D, Guo H, Shen J, Peng H. PLoS One; 2012 Nov 15; 7(10):e47900. PubMed ID: 23110126 [Abstract] [Full Text] [Related]
9. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Nature; 2008 Jul 24; 454(7203):538-42. PubMed ID: 18596693 [Abstract] [Full Text] [Related]
10. AMP-activated protein kinase (AMPK)-dependent and -independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells. Tan CD, Smolenski RT, Harhun MI, Patel HK, Ahmed SG, Wanisch K, Yáñez-Muñoz RJ, Baines DL. Br J Pharmacol; 2012 Sep 24; 167(2):368-82. PubMed ID: 22509822 [Abstract] [Full Text] [Related]
11. HIF and HOIL-1L-mediated PKCζ degradation stabilizes plasma membrane Na,K-ATPase to protect against hypoxia-induced lung injury. Magnani ND, Dada LA, Queisser MA, Brazee PL, Welch LC, Anekalla KR, Zhou G, Vagin O, Misharin AV, Budinger GRS, Iwai K, Ciechanover AJ, Sznajder JI. Proc Natl Acad Sci U S A; 2017 Nov 21; 114(47):E10178-E10186. PubMed ID: 29109255 [Abstract] [Full Text] [Related]
12. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. Luik RM, Wu MM, Buchanan J, Lewis RS. J Cell Biol; 2006 Sep 11; 174(6):815-25. PubMed ID: 16966423 [Abstract] [Full Text] [Related]
13. Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells. Benziane B, Björnholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chibalin AV. J Biol Chem; 2012 Jul 06; 287(28):23451-63. PubMed ID: 22610379 [Abstract] [Full Text] [Related]
16. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. DeHaven WI, Smyth JT, Boyles RR, Putney JW. J Biol Chem; 2007 Jun 15; 282(24):17548-56. PubMed ID: 17452328 [Abstract] [Full Text] [Related]
17. Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1). Hoover PJ, Lewis RS. Proc Natl Acad Sci U S A; 2011 Aug 09; 108(32):13299-304. PubMed ID: 21788510 [Abstract] [Full Text] [Related]
18. A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels. Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C. J Biol Chem; 2009 Mar 27; 284(13):8421-6. PubMed ID: 19189966 [Abstract] [Full Text] [Related]
19. Kozak JA, Putney JW, Zhang X, Gueguinou M, Trebak M. ; 2018 Mar 27. PubMed ID: 30299650 [Abstract] [Full Text] [Related]
20. Visualisation and identification of the interaction between STIM1s in resting cells. He J, Yu T, Pan J, Li H. PLoS One; 2012 Mar 27; 7(3):e33377. PubMed ID: 22438918 [Abstract] [Full Text] [Related] Page: [Next] [New Search]