These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
338 related items for PubMed ID: 21730512
21. Single-walled carbon nanotubes: from fundamental studies to new device concepts. Odom TW, Huang JL, Lieber CM. Ann N Y Acad Sci; 2002 Apr; 960():203-15. PubMed ID: 11971801 [Abstract] [Full Text] [Related]
22. Electronic structures of organic molecule encapsulated BN nanotubes under transverse electric field. He W, Li Z, Yang J, Hou JG. J Chem Phys; 2008 Jul 14; 129(2):024710. PubMed ID: 18624555 [Abstract] [Full Text] [Related]
23. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties. Narayanan TN, Suchand Sandeep CS, Shaijumon MM, Ajayan PM, Philip R, Anantharaman MR. Nanotechnology; 2009 Jul 15; 20(28):285702. PubMed ID: 19550014 [Abstract] [Full Text] [Related]
24. Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond. Zyubin AS, Mebel AM, Hayashi M, Chang HC, Lin SH. J Comput Chem; 2009 Jan 15; 30(1):119-31. PubMed ID: 18548526 [Abstract] [Full Text] [Related]
25. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review. Cole MW, Crespi VH, Dresselhaus MS, Dresselhaus G, Fischer JE, Gutierrez HR, Kojima K, Mahan GD, Rao AM, Sofo JO, Tachibana M, Wako K, Xiong Q. J Phys Condens Matter; 2010 Aug 25; 22(33):334201. PubMed ID: 21386491 [Abstract] [Full Text] [Related]
26. Electronic properties of nanotube-ribbon hybrid systems. Li TS, Chang SC, Lien JY, Lin MF. Nanotechnology; 2008 Mar 12; 19(10):105703. PubMed ID: 21817711 [Abstract] [Full Text] [Related]
27. The optical resonances in carbon nanotubes arise from excitons. Wang F, Dukovic G, Brus LE, Heinz TF. Science; 2005 May 06; 308(5723):838-41. PubMed ID: 15879212 [Abstract] [Full Text] [Related]
28. Low-energy electronic properties of the AB-stacked few-layer graphites. Lu CL, Chang CP, Huang YC, Lu JM, Hwang CC, Lin MF. J Phys Condens Matter; 2006 Jul 05; 18(26):5849-59. PubMed ID: 21690801 [Abstract] [Full Text] [Related]
29. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. Sun X, Zaric S, Daranciang D, Welsher K, Lu Y, Li X, Dai H. J Am Chem Soc; 2008 May 21; 130(20):6551-5. PubMed ID: 18426207 [Abstract] [Full Text] [Related]
30. Electronic and optical properties of graphene nanoribbons in external fields. Chung HC, Chang CP, Lin CY, Lin MF. Phys Chem Chem Phys; 2016 Mar 21; 18(11):7573-616. PubMed ID: 26744847 [Abstract] [Full Text] [Related]
31. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Ouyang M, Huang JL, Lieber CM. Annu Rev Phys Chem; 2002 Mar 21; 53():201-20. PubMed ID: 11972007 [Abstract] [Full Text] [Related]
32. Optical properties and electronic band structure of AgGaTe2 chalcopyrite semiconductor. Arai S, Ozaki S, Adachi S. Appl Opt; 2010 Feb 10; 49(5):829-37. PubMed ID: 20154750 [Abstract] [Full Text] [Related]
33. Ab initio potential energy surfaces, total absorption cross sections, and product quantum state distributions for the low-lying electronic states of N(2)O. Daud MN, Balint-Kurti GG, Brown A. J Chem Phys; 2005 Feb 01; 122(5):54305. PubMed ID: 15740320 [Abstract] [Full Text] [Related]
34. Energy gaps in "metallic" single-walled carbon nanotubes. Ouyang M, Huang JL, Cheung CL, Lieber CM. Science; 2001 Apr 27; 292(5517):702-5. PubMed ID: 11326093 [Abstract] [Full Text] [Related]
35. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy. Schweitzer-Stenner R. J Phys Chem B; 2008 Aug 21; 112(33):10358-66. PubMed ID: 18665633 [Abstract] [Full Text] [Related]
36. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. Gao B, Jiang J, Wu Z, Luo Y. J Chem Phys; 2008 Feb 28; 128(8):084707. PubMed ID: 18315072 [Abstract] [Full Text] [Related]
37. Potentiometric, electronic structural, and ground- and excited-state optical properties of conjugated bis[(porphinato)zinc(II)] compounds featuring proquinoidal spacer units. Susumu K, Duncan TV, Therien MJ. J Am Chem Soc; 2005 Apr 13; 127(14):5186-95. PubMed ID: 15810854 [Abstract] [Full Text] [Related]
38. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Capek I. Adv Colloid Interface Sci; 2009 Sep 30; 150(2):63-89. PubMed ID: 19573856 [Abstract] [Full Text] [Related]
39. The electronic properties of superatom states of hollow molecules. Feng M, Zhao J, Huang T, Zhu X, Petek H. Acc Chem Res; 2011 May 17; 44(5):360-8. PubMed ID: 21413734 [Abstract] [Full Text] [Related]
40. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores. Bravaya KB, Grigorenko BL, Nemukhin AV, Krylov AI. Acc Chem Res; 2012 Feb 21; 45(2):265-75. PubMed ID: 21882809 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]