These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1030 related items for PubMed ID: 21733402
1. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion]. Dong JW, Feng F, Zhao WD, Rong LM, Liu XM. Zhonghua Wai Ke Za Zhi; 2011 May 01; 49(5):436-9. PubMed ID: 21733402 [Abstract] [Full Text] [Related]
2. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB, Murovic JA, Cho BY, Lim TJ, Park J. J Neurosurg Spine; 2010 Jun 01; 12(6):700-8. PubMed ID: 20515358 [Abstract] [Full Text] [Related]
3. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE, Volkov A, Vrionis FD. J Neurosurg Spine; 2014 Feb 01; 20(2):209-19. PubMed ID: 24286528 [Abstract] [Full Text] [Related]
4. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA. Spine (Phila Pa 1976); 2006 Apr 01; 31(7):762-8. PubMed ID: 16582849 [Abstract] [Full Text] [Related]
5. Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion. Bhatia NN, Lee KH, Bui CN, Luna M, Wahba GM, Lee TQ. Spine (Phila Pa 1976); 2012 Jan 15; 37(2):E79-85. PubMed ID: 21629171 [Abstract] [Full Text] [Related]
6. Biomechanical analysis of a novel posterior construct in a transforaminal lumbar interbody fusion model an in vitro study. Sethi A, Muzumdar AM, Ingalhalikar A, Vaidya R. Spine J; 2011 Sep 15; 11(9):863-9. PubMed ID: 21802998 [Abstract] [Full Text] [Related]
7. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ. Spine (Phila Pa 1976); 2004 Feb 15; 29(4):E65-70. PubMed ID: 15094547 [Abstract] [Full Text] [Related]
8. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F, Mageswaran P, Colbrunn RW, Bonner TF, McLain RF. Spine J; 2013 May 15; 13(5):572-9. PubMed ID: 23498926 [Abstract] [Full Text] [Related]
9. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. Reis MT, Reyes PM, Bse, Altun I, Newcomb AG, Singh V, Chang SW, Kelly BP, Crawford NR. J Neurosurg Spine; 2016 Dec 15; 25(6):720-726. PubMed ID: 27391398 [Abstract] [Full Text] [Related]
10. Would an anatomically shaped lumbar interbody cage provide better stability? An in vitro cadaveric biomechanical evaluation. Tsitsopoulos PP, Serhan H, Voronov LI, Carandang G, Havey RM, Ghanayem AJ, Patwardhan AG. J Spinal Disord Tech; 2012 Dec 15; 25(8):E240-4. PubMed ID: 22362111 [Abstract] [Full Text] [Related]
11. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques. Niemeyer TK, Koriller M, Claes L, Kettler A, Werner K, Wilke HJ. Neurosurgery; 2006 Dec 15; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690 [Abstract] [Full Text] [Related]
12. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws. Kuklo TR, Dmitriev AE, Cardoso MJ, Lehman RA, Erickson M, Gill NW. Spine (Phila Pa 1976); 2008 Jul 01; 33(15):E482-7. PubMed ID: 18594445 [Abstract] [Full Text] [Related]
14. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Slucky AV, Brodke DS, Bachus KN, Droge JA, Braun JT. Spine J; 2006 Jul 01; 6(1):78-85. PubMed ID: 16413452 [Abstract] [Full Text] [Related]
15. Effects of facetectomy and crosslink augmentation on motion segment flexibility in posterior lumbar interbody fusion. Chutkan NB, Zhou H, Akins JP, Wenger KH. Spine (Phila Pa 1976); 2008 Oct 15; 33(22):E828-35. PubMed ID: 18923306 [Abstract] [Full Text] [Related]
16. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model. Mantell M, Cyriac M, Haines CM, Gudipally M, O'Brien JR. J Neurosurg Spine; 2016 Jan 15; 24(1):32-8. PubMed ID: 26384133 [Abstract] [Full Text] [Related]
17. Primary stiffness of a modified transforaminal lumbar interbody fusion cage with integrated screw fixation: cadaveric biomechanical study. Keiler A, Schmoelz W, Erhart S, Gnanalingham K. Spine (Phila Pa 1976); 2014 Aug 01; 39(17):E994-E1000. PubMed ID: 24875958 [Abstract] [Full Text] [Related]
20. Which posterior instrumentation is better for two-level anterior lumbar interbody fusion: translaminar facet screw or pedicle screw? Hou Y, Shen Y, Liu Z, Nie Z. Arch Orthop Trauma Surg; 2013 Jan 01; 133(1):37-42. PubMed ID: 23109094 [Abstract] [Full Text] [Related] Page: [Next] [New Search]