These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


414 related items for PubMed ID: 21735264

  • 21. Challenges for the production of bioethanol from biomass using recombinant yeasts.
    Kricka W, Fitzpatrick J, Bond U.
    Adv Appl Microbiol; 2015; 92():89-125. PubMed ID: 26003934
    [Abstract] [Full Text] [Related]

  • 22. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G.
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [Abstract] [Full Text] [Related]

  • 23. Technological options for biological fuel ethanol.
    Vertès AA, Inui M, Yukawa H.
    J Mol Microbiol Biotechnol; 2008 Jan; 15(1):16-30. PubMed ID: 18349547
    [Abstract] [Full Text] [Related]

  • 24. Genotypic and phenotypic characterization of industrial autochthonous Saccharomyces cerevisiae for the selection of well-adapted bioethanol-producing strains.
    Canseco Grellet MA, Dantur KI, Perera MF, Ahmed PM, Castagnaro A, Arroyo-Lopez FN, Gallego JB, Welin B, Ruiz RM.
    Fungal Biol; 2022 Oct; 126(10):658-673. PubMed ID: 36116898
    [Abstract] [Full Text] [Related]

  • 25. The effect of biomass moisture content on bioethanol yields from steam pretreated switchgrass and sugarcane bagasse.
    Ewanick S, Bura R.
    Bioresour Technol; 2011 Feb; 102(3):2651-8. PubMed ID: 21109425
    [Abstract] [Full Text] [Related]

  • 26. Saccharomyces cerevisiae strains used industrially for bioethanol production.
    Jacobus AP, Gross J, Evans JH, Ceccato-Antonini SR, Gombert AK.
    Essays Biochem; 2021 Jul 26; 65(2):147-161. PubMed ID: 34156078
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'.
    Chandel AK, Singh OV.
    Appl Microbiol Biotechnol; 2011 Mar 26; 89(5):1289-303. PubMed ID: 21181146
    [Abstract] [Full Text] [Related]

  • 29. Use of post-harvest sugarcane residue for ethanol production.
    Dawson L, Boopathy R.
    Bioresour Technol; 2007 Jul 26; 98(9):1695-9. PubMed ID: 16935500
    [Abstract] [Full Text] [Related]

  • 30. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
    Basso TO, Gomes FS, Lopes ML, de Amorim HV, Eggleston G, Basso LC.
    Antonie Van Leeuwenhoek; 2014 Jan 26; 105(1):169-77. PubMed ID: 24198118
    [Abstract] [Full Text] [Related]

  • 31. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L.
    J Biosci Bioeng; 2010 Jul 26; 110(1):18-25. PubMed ID: 20541110
    [Abstract] [Full Text] [Related]

  • 32. Next-generation biofuels: a new challenge for yeast.
    Petrovič U.
    Yeast; 2015 Sep 26; 32(9):583-93. PubMed ID: 26108577
    [Abstract] [Full Text] [Related]

  • 33. Solving ethanol production problems with genetically modified yeast strains.
    Abreu-Cavalheiro A, Monteiro G.
    Braz J Microbiol; 2013 Sep 26; 44(3):665-71. PubMed ID: 24516432
    [Abstract] [Full Text] [Related]

  • 34. Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2.
    Pereira FB, Gomes DG, Guimarães PM, Teixeira JA, Domingues L.
    Biotechnol Lett; 2012 Jan 26; 34(1):45-53. PubMed ID: 21898130
    [Abstract] [Full Text] [Related]

  • 35. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.
    Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, Ruyters S.
    Appl Microbiol Biotechnol; 2014 Nov 26; 98(22):9483-98. PubMed ID: 25267160
    [Abstract] [Full Text] [Related]

  • 36. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels.
    Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E.
    Appl Microbiol Biotechnol; 2010 Jul 26; 87(4):1303-15. PubMed ID: 20535464
    [Abstract] [Full Text] [Related]

  • 37. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F, Cao M, Jin Y, Yang X, Tian S.
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug 26; 28(8):901-11. PubMed ID: 23185890
    [Abstract] [Full Text] [Related]

  • 38. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C, Sousa Lda C, Jin M, Chang L, Dale BE, Balan V.
    Biotechnol Bioeng; 2010 Oct 15; 107(3):441-50. PubMed ID: 20521302
    [Abstract] [Full Text] [Related]

  • 39. Importance of stability study of continuous systems for ethanol production.
    Paz Astudillo IC, Cardona Alzate CA.
    J Biotechnol; 2011 Jan 10; 151(1):43-55. PubMed ID: 21034786
    [Abstract] [Full Text] [Related]

  • 40. Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production.
    Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderón LA, Mieczkowski PA, Argueso JL, Pereira GA.
    Microb Cell Fact; 2015 Jan 30; 14():13. PubMed ID: 25633848
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.