These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 21735452

  • 1. Surveying implicit solvent models for estimating small molecule absolute hydration free energies.
    Knight JL, Brooks CL.
    J Comput Chem; 2011 Oct; 32(13):2909-23. PubMed ID: 21735452
    [Abstract] [Full Text] [Related]

  • 2. Assessing the quality of absolute hydration free energies among CHARMM-compatible ligand parameterization schemes.
    Knight JL, Yesselman JD, Brooks CL.
    J Comput Chem; 2013 Apr 30; 34(11):893-903. PubMed ID: 23292859
    [Abstract] [Full Text] [Related]

  • 3. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL, Dumont E, Chodera JD, Dill KA.
    J Phys Chem B; 2007 Mar 08; 111(9):2242-54. PubMed ID: 17291029
    [Abstract] [Full Text] [Related]

  • 4. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D, Deng Y, Roux B.
    J Chem Theory Comput; 2009 Apr 14; 5(4):919-30. PubMed ID: 26609601
    [Abstract] [Full Text] [Related]

  • 5. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV, Onufriev AV, Aguilar B, Sulimov VB.
    J Mol Graph Model; 2017 Mar 14; 72():70-80. PubMed ID: 28064081
    [Abstract] [Full Text] [Related]

  • 6. Explicit Solvent Hydration Benchmark for Proteins with Application to the PBSA Method.
    Setny P, Dudek A.
    J Chem Theory Comput; 2017 Jun 13; 13(6):2762-2776. PubMed ID: 28498675
    [Abstract] [Full Text] [Related]

  • 7. Generalized Born implicit solvent models for small molecule hydration free energies.
    Brieg M, Setzler J, Albert S, Wenzel W.
    Phys Chem Chem Phys; 2017 Jan 04; 19(2):1677-1685. PubMed ID: 27995260
    [Abstract] [Full Text] [Related]

  • 8. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
    Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W.
    J Chem Theory Comput; 2010 May 11; 6(5):1509-19. PubMed ID: 26615687
    [Abstract] [Full Text] [Related]

  • 9. Treating entropy and conformational changes in implicit solvent simulations of small molecules.
    Mobley DL, Dill KA, Chodera JD.
    J Phys Chem B; 2008 Jan 24; 112(3):938-46. PubMed ID: 18171044
    [Abstract] [Full Text] [Related]

  • 10. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields.
    Fan S, Iorga BI, Beckstein O.
    J Comput Aided Mol Des; 2020 May 24; 34(5):543-560. PubMed ID: 31960254
    [Abstract] [Full Text] [Related]

  • 11. Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration.
    Zhang H, Jiang Y, Yan H, Cui Z, Yin C.
    J Chem Inf Model; 2017 Nov 27; 57(11):2763-2775. PubMed ID: 29039666
    [Abstract] [Full Text] [Related]

  • 12. Protein-Ligand Electrostatic Binding Free Energies from Explicit and Implicit Solvation.
    Izadi S, Aguilar B, Onufriev AV.
    J Chem Theory Comput; 2015 Sep 08; 11(9):4450-9. PubMed ID: 26575935
    [Abstract] [Full Text] [Related]

  • 13. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A, Lin FY, Roux B, MacKerell AD.
    J Comput Chem; 2018 Aug 15; 39(22):1707-1719. PubMed ID: 29737546
    [Abstract] [Full Text] [Related]

  • 14. The effects of implicit modeling of nonpolar solvation on protein folding simulations.
    Shao Q, Zhu W.
    Phys Chem Chem Phys; 2018 Jul 11; 20(27):18410-18419. PubMed ID: 29946610
    [Abstract] [Full Text] [Related]

  • 15. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N, Zhang BW, Levy RM.
    J Chem Theory Comput; 2015 Jun 09; 11(6):2868-78. PubMed ID: 26236174
    [Abstract] [Full Text] [Related]

  • 16. Hydration in discrete water (II): from neutral to charged solutes.
    Setny P.
    J Phys Chem B; 2015 May 14; 119(19):5970-8. PubMed ID: 25896299
    [Abstract] [Full Text] [Related]

  • 17. FreeSolv: a database of experimental and calculated hydration free energies, with input files.
    Mobley DL, Guthrie JP.
    J Comput Aided Mol Des; 2014 Jul 14; 28(7):711-20. PubMed ID: 24928188
    [Abstract] [Full Text] [Related]

  • 18. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.
    Lara A, Riquelme M, Vöhringer-Martinez E.
    J Comput Chem; 2018 Aug 15; 39(22):1728-1737. PubMed ID: 29752734
    [Abstract] [Full Text] [Related]

  • 19. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G, Pickard FC, Mei Y, Brooks BR.
    J Comput Aided Mol Des; 2014 Mar 15; 28(3):245-57. PubMed ID: 24504703
    [Abstract] [Full Text] [Related]

  • 20. Blind prediction of solvation free energies from the SAMPL4 challenge.
    Mobley DL, Wymer KL, Lim NM, Guthrie JP.
    J Comput Aided Mol Des; 2014 Mar 15; 28(3):135-50. PubMed ID: 24615156
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.