These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 21736941
1. Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. Yang Y, Zhao W, He J, Zhao Y, Ding F, Gu X. Eur J Pharm Biopharm; 2011 Nov; 79(3):519-25. PubMed ID: 21736941 [Abstract] [Full Text] [Related]
2. The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Chang CJ. Tissue Eng Part A; 2009 Mar; 15(3):547-57. PubMed ID: 18925830 [Abstract] [Full Text] [Related]
3. Comparison between two different methods of immobilizing NGF in poly(DL-lactic acid-co-glycolic acid) conduit for peripheral nerve regeneration by EDC/NHS/MES and genipin. Hsieh SC, Tang CM, Huang WT, Hsieh LL, Lu CM, Chang CJ, Hsu SH. J Biomed Mater Res A; 2011 Dec 15; 99(4):576-85. PubMed ID: 21953828 [Abstract] [Full Text] [Related]
4. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Zhang L, Zhao W, Niu C, Zhou Y, Shi H, Wang Y, Yang Y, Tang X. Ann Biomed Eng; 2018 Jul 15; 46(7):1013-1025. PubMed ID: 29603044 [Abstract] [Full Text] [Related]
5. Effects of nerve growth factor from genipin-crosslinked gelatin in polycaprolactone conduit on peripheral nerve regeneration--in vitro and in vivo. Chang CJ. J Biomed Mater Res A; 2009 Nov 15; 91(2):586-96. PubMed ID: 18985781 [Abstract] [Full Text] [Related]
6. Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design. Lau YT, Kwok LF, Tam KW, Chan YS, Shum DK, Shea GK. Colloids Surf B Biointerfaces; 2018 Feb 01; 162():126-134. PubMed ID: 29190463 [Abstract] [Full Text] [Related]
7. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Xu H, Yan Y, Li S. Biomaterials; 2011 Jul 01; 32(20):4506-16. PubMed ID: 21397324 [Abstract] [Full Text] [Related]
8. Establishment of nerve growth factor gradients on aligned chitosan-polylactide /alginate fibers for neural tissue engineering applications. Wu H, Liu J, Fang Q, Xiao B, Wan Y. Colloids Surf B Biointerfaces; 2017 Dec 01; 160():598-609. PubMed ID: 29028608 [Abstract] [Full Text] [Related]
9. Preparation and evaluation of NGF-microsphere conduits for regeneration of defective nerves. Sun H, Xu F, Guo D, Yu H. Neurol Res; 2012 Jun 01; 34(5):491-7. PubMed ID: 22642924 [Abstract] [Full Text] [Related]
10. Mechanical properties and permeability of porous chitosan-poly(p-dioxanone)/silk fibroin conduits used for peripheral nerve repair. Wu H, Zhang J, Luo Y, Wan Y, Sun S. J Mech Behav Biomed Mater; 2015 Oct 01; 50():192-205. PubMed ID: 26143352 [Abstract] [Full Text] [Related]
11. Release characteristics and bioactivity of gelatin-tricalcium phosphate membranes covalently immobilized with nerve growth factors. Chen PR, Chen MH, Lin FH, Su WY. Biomaterials; 2005 Nov 01; 26(33):6579-87. PubMed ID: 16023717 [Abstract] [Full Text] [Related]
12. Ionically cross-linked chitosan microspheres for controlled release of bioactive nerve growth factor. Zeng W, Huang J, Hu X, Xiao W, Rong M, Yuan Z, Luo Z. Int J Pharm; 2011 Dec 15; 421(2):283-90. PubMed ID: 22001532 [Abstract] [Full Text] [Related]
13. Chitosan crosslinked flat scaffolds for peripheral nerve regeneration. Fregnan F, Ciglieri E, Tos P, Crosio A, Ciardelli G, Ruini F, Tonda-Turo C, Geuna S, Raimondo S. Biomed Mater; 2016 Aug 10; 11(4):045010. PubMed ID: 27508969 [Abstract] [Full Text] [Related]
14. Multi-tubule conduit-filler constructs loaded with gradient-distributed growth factors for neural tissue engineering applications. Wu H, Fang Q, Liu J, Yu X, Xu Y, Wan Y, Xiao B. J Mech Behav Biomed Mater; 2018 Jan 10; 77():671-682. PubMed ID: 29102892 [Abstract] [Full Text] [Related]
15. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility. Norowski PA, Fujiwara T, Clem WC, Adatrow PC, Eckstein EC, Haggard WO, Bumgardner JD. J Tissue Eng Regen Med; 2015 May 10; 9(5):577-83. PubMed ID: 23166109 [Abstract] [Full Text] [Related]
16. Development of multifunctional films for peripheral nerve regeneration. Uz M, Sharma AD, Adhikari P, Sakaguchi DS, Mallapragada SK. Acta Biomater; 2017 Jul 01; 56():141-152. PubMed ID: 27693689 [Abstract] [Full Text] [Related]
17. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. Liu JJ, Wang CY, Wang JG, Ruan HJ, Fan CY. J Biomed Mater Res A; 2011 Jan 01; 96(1):13-20. PubMed ID: 20949481 [Abstract] [Full Text] [Related]
18. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel. Chao X, Xu L, Li J, Han Y, Li X, Mao Y, Shang H, Fan Z, Wang H. Acta Otolaryngol; 2016 Jun 01; 136(6):585-91. PubMed ID: 26881479 [Abstract] [Full Text] [Related]
19. Highly permeable genipin-cross-linked gelatin conduits enhance peripheral nerve regeneration. Chang JY, Ho TY, Lee HC, Lai YL, Lu MC, Yao CH, Chen YS. Artif Organs; 2009 Dec 01; 33(12):1075-85. PubMed ID: 19663865 [Abstract] [Full Text] [Related]
20. Peripheral Nerve Regeneration Through Hydrogel-Enriched Chitosan Conduits Containing Engineered Schwann Cells for Drug Delivery. Meyer C, Wrobel S, Raimondo S, Rochkind S, Heimann C, Shahar A, Ziv-Polat O, Geuna S, Grothe C, Haastert-Talini K. Cell Transplant; 2016 Dec 01; 25(1):159-82. PubMed ID: 25876520 [Abstract] [Full Text] [Related] Page: [Next] [New Search]