These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
151 related items for PubMed ID: 21742375
1. Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Ueno T, Tsukimura N, Yamada M, Ogawa T. Biomaterials; 2011 Oct; 32(30):7297-308. PubMed ID: 21742375 [Abstract] [Full Text] [Related]
2. Bone integration capability of alkali- and heat-treated nanobimorphic Ti-15Mo-5Zr-3Al. Tsukimura N, Ueno T, Iwasa F, Minamikawa H, Sugita Y, Ishizaki K, Ikeda T, Nakagawa K, Yamada M, Ogawa T. Acta Biomater; 2011 Dec; 7(12):4267-77. PubMed ID: 21888994 [Abstract] [Full Text] [Related]
3. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Yamada M, Ueno T, Minamikawa H, Ikeda T, Nakagawa K, Ogawa T. Clin Oral Implants Res; 2013 Sep; 24(9):991-1001. PubMed ID: 22726210 [Abstract] [Full Text] [Related]
4. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Yamada M, Ueno T, Tsukimura N, Ikeda T, Nakagawa K, Hori N, Suzuki T, Ogawa T. Int J Nanomedicine; 2012 Sep; 7():859-73. PubMed ID: 22359461 [Abstract] [Full Text] [Related]
5. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Kubo K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, Aita H, Chiou WA, Ogawa T. Biomaterials; 2009 Oct; 30(29):5319-29. PubMed ID: 19589591 [Abstract] [Full Text] [Related]
6. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium. Sugita Y, Ishizaki K, Iwasa F, Ueno T, Minamikawa H, Yamada M, Suzuki T, Ogawa T. Biomaterials; 2011 Nov; 32(33):8374-84. PubMed ID: 21840046 [Abstract] [Full Text] [Related]
7. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Hori N, Iwasa F, Ueno T, Takeuchi K, Tsukimura N, Yamada M, Hattori M, Yamamoto A, Ogawa T. Dent Mater; 2010 Apr; 26(4):275-87. PubMed ID: 20006380 [Abstract] [Full Text] [Related]
8. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces. Zhuang XM, Zhou B, Ouyang JL, Sun HP, Wu YL, Liu Q, Deng FL. Biomed Mater; 2014 Aug; 9(4):045001. PubMed ID: 24945708 [Abstract] [Full Text] [Related]
9. Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Ueno T, Yamada M, Suzuki T, Minamikawa H, Sato N, Hori N, Takeuchi K, Hattori M, Ogawa T. Biomaterials; 2010 Mar; 31(7):1546-57. PubMed ID: 19962757 [Abstract] [Full Text] [Related]
10. Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno T, Saruwatari L, Aita H, Chiou WA, Ogawa T. Biomaterials; 2011 Jul; 32(19):4358-68. PubMed ID: 21421270 [Abstract] [Full Text] [Related]
11. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Salou L, Hoornaert A, Louarn G, Layrolle P. Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926 [Abstract] [Full Text] [Related]
12. Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Kohal RJ, Wolkewitz M, Hinze M, Han JS, Bächle M, Butz F. Clin Oral Implants Res; 2009 Apr; 20(4):333-9. PubMed ID: 19298287 [Abstract] [Full Text] [Related]
13. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A, Wang CJ, Kelly J, Gubbi P, Nishimura I. Int J Oral Maxillofac Implants; 2009 Apr; 24(5):808-16. PubMed ID: 19865620 [Abstract] [Full Text] [Related]
14. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. Abron A, Hopfensperger M, Thompson J, Cooper LF. J Prosthet Dent; 2001 Jan; 85(1):40-6. PubMed ID: 11174677 [Abstract] [Full Text] [Related]
15. Enhanced osteoconductivity of titanium implant by polarization-induced surface charges. Nozaki K, Wang W, Horiuchi N, Nakamura M, Takakuda K, Yamashita K, Nagai A. J Biomed Mater Res A; 2014 Sep; 102(9):3077-86. PubMed ID: 24123807 [Abstract] [Full Text] [Related]
16. The effect of systemic nicotine on osseointegration of titanium implants in the rat femur. Berley J, Yamano S, Sukotjo C. J Oral Implantol; 2010 Sep; 36(3):185-93. PubMed ID: 20553172 [Abstract] [Full Text] [Related]
17. Comparative bone tissue integration of nanostructured and microroughened dental implants. Salou L, Hoornaert A, Stanovici J, Briand S, Louarn G, Layrolle P. Nanomedicine (Lond); 2015 Sep; 10(5):741-51. PubMed ID: 25816877 [Abstract] [Full Text] [Related]
19. Effect of supramicron roughness characteristics produced by 1- and 2-step acid etching on the osseointegration capability of titanium. Att W, Tsukimura N, Suzuki T, Ogawa T. Int J Oral Maxillofac Implants; 2007 Sep; 22(5):719-28. PubMed ID: 17974105 [Abstract] [Full Text] [Related]
20. Histologic comparison of a thermal dual-etched implant surface to machined, TPS, and HA surfaces: bone contact in vivo in rabbits. London RM, Roberts FA, Baker DA, Rohrer MD, O'Neal RB. Int J Oral Maxillofac Implants; 2002 Sep; 17(3):369-76. PubMed ID: 12074452 [Abstract] [Full Text] [Related] Page: [Next] [New Search]