These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
324 related items for PubMed ID: 21744173
21. In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. Giunchedi P, Conti B, Scalia S, Conte U. J Control Release; 1998 Dec 04; 56(1-3):53-62. PubMed ID: 9801429 [Abstract] [Full Text] [Related]
22. Formulation, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres. Sinha VR, Trehan A. Drug Deliv; 2005 Dec 04; 12(3):133-9. PubMed ID: 16025842 [Abstract] [Full Text] [Related]
23. Minimizing acylation of peptides in PLGA microspheres. Zhang Y, Schwendeman SP. J Control Release; 2012 Aug 20; 162(1):119-26. PubMed ID: 22546683 [Abstract] [Full Text] [Related]
24. Influence of formulation parameters on the characteristics of poly(D, L-lactide-co-glycolide) microspheres containing poly(L-lysine) complexed plasmid DNA. Capan Y, Woo BH, Gebrekidan S, Ahmed S, DeLuca PP. J Control Release; 1999 Aug 05; 60(2-3):279-86. PubMed ID: 10425333 [Abstract] [Full Text] [Related]
25. Enhancing initial release of peptide from poly(d,l-lactide-co-glycolide) (PLGA) microspheres by addition of a porosigen and increasing drug load. Ravivarapu HB, Lee H, DeLuca PP. Pharm Dev Technol; 2000 Aug 05; 5(2):287-96. PubMed ID: 10810758 [Abstract] [Full Text] [Related]
26. Preparation, characterization, and in vitro evaluation of 1- and 4-month controlled release orntide PLA and PLGA microspheres. Kostanski JW, Thanoo BC, DeLuca PP. Pharm Dev Technol; 2000 Aug 05; 5(4):585-96. PubMed ID: 11109259 [Abstract] [Full Text] [Related]
28. Reversible hydrophobic ion-paring complex strategy to minimize acylation of octreotide during long-term delivery from PLGA microparticles. Vaishya RD, Mandal A, Gokulgandhi M, Patel S, Mitra AK. Int J Pharm; 2015 Jul 15; 489(1-2):237-45. PubMed ID: 25940041 [Abstract] [Full Text] [Related]
29. Inhibition of peptide acylation in PLGA microspheres with water-soluble divalent cationic salts. Zhang Y, Sophocleous AM, Schwendeman SP. Pharm Res; 2009 Aug 15; 26(8):1986-94. PubMed ID: 19533307 [Abstract] [Full Text] [Related]
30. Modulated release of IdUrd from poly (D,L-lactide-co-glycolide) microspheres by addition of poly (D,L-lactide) oligomers. Geze A, Venier-Julienne MC, Saulnier P, Varlet P, Daumas-Duport C, Devauchelle P, Benoit JP. J Control Release; 1999 Apr 19; 58(3):311-22. PubMed ID: 10099156 [Abstract] [Full Text] [Related]
31. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK, Hung T, Letchford K, Burt HM. Int J Pharm; 2007 Sep 05; 342(1-2):6-17. PubMed ID: 17555895 [Abstract] [Full Text] [Related]
32. A biodegradable polymeric system for peptide-protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process. Alcalá-Alcalá S, Urbán-Morlán Z, Aguilar-Rosas I, Quintanar-Guerrero D. Int J Nanomedicine; 2013 Sep 05; 8():2141-51. PubMed ID: 23788833 [Abstract] [Full Text] [Related]
33. Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres. Jiang G, Qiu W, DeLuca PP. Pharm Res; 2003 Mar 05; 20(3):452-9. PubMed ID: 12669968 [Abstract] [Full Text] [Related]
34. Computer modeling assisted design of monodisperse PLGA microspheres with controlled porosity affords zero order release of an encapsulated macromolecule for 3 months. Kazazi-Hyseni F, Landin M, Lathuile A, Veldhuis GJ, Rahimian S, Hennink WE, Kok RJ, van Nostrum CF. Pharm Res; 2014 Oct 05; 31(10):2844-56. PubMed ID: 24825756 [Abstract] [Full Text] [Related]
35. PLGA and PHBV microsphere formulations and solid-state characterization: possible implications for local delivery of fusidic acid for the treatment and prevention of orthopaedic infections. Yang C, Plackett D, Needham D, Burt HM. Pharm Res; 2009 Jul 05; 26(7):1644-56. PubMed ID: 19384471 [Abstract] [Full Text] [Related]
36. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition. Kwon YM, Kim SW. Pharm Res; 2004 Feb 05; 21(2):339-43. PubMed ID: 15032317 [Abstract] [Full Text] [Related]
37. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. Witschi C, Doelker E. J Control Release; 1998 Feb 12; 51(2-3):327-41. PubMed ID: 9685930 [Abstract] [Full Text] [Related]
38. Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d,L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. Duvvuri S, Janoria KG, Pal D, Mitra AK. J Ocul Pharmacol Ther; 2007 Jun 12; 23(3):264-74. PubMed ID: 17593010 [Abstract] [Full Text] [Related]
39. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy. Lim SM, Eom HN, Jiang HH, Sohn M, Lee KC. J Pharm Sci; 2015 Jan 12; 104(1):72-80. PubMed ID: 25407390 [Abstract] [Full Text] [Related]
40. Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Mao S, Shi Y, Li L, Xu J, Schaper A, Kissel T. Eur J Pharm Biopharm; 2008 Feb 12; 68(2):214-23. PubMed ID: 17651954 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]