These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


232 related items for PubMed ID: 21744778

  • 1. Quantitative proteomic approach for cellulose degradation by Neurospora crassa.
    Phillips CM, Iavarone AT, Marletta MA.
    J Proteome Res; 2011 Sep 02; 10(9):4177-85. PubMed ID: 21744778
    [Abstract] [Full Text] [Related]

  • 2. Expression and characterization of the Neurospora crassa endoglucanase GH5-1.
    Sun J, Phillips CM, Anderson CT, Beeson WT, Marletta MA, Glass NL.
    Protein Expr Purif; 2011 Feb 02; 75(2):147-54. PubMed ID: 20826217
    [Abstract] [Full Text] [Related]

  • 3. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?
    Dogaris I, Mamma D, Kekos D.
    Appl Microbiol Biotechnol; 2013 Feb 02; 97(4):1457-73. PubMed ID: 23318834
    [Abstract] [Full Text] [Related]

  • 4. Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca.
    Adav SS, Ng CS, Arulmani M, Sze SK.
    J Proteome Res; 2010 Jun 04; 9(6):3016-24. PubMed ID: 20408570
    [Abstract] [Full Text] [Related]

  • 5. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa.
    Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL.
    Proc Natl Acad Sci U S A; 2009 Dec 29; 106(52):22157-62. PubMed ID: 20018766
    [Abstract] [Full Text] [Related]

  • 6. Quantitative Proteome Profiling Reveals Cellobiose-Dependent Protein Processing and Export Pathways for the Lignocellulolytic Response in Neurospora crassa.
    Liu D, Liu Y, Zhang D, Chen X, Liu Q, Xiong B, Zhang L, Wei L, Wang Y, Fang H, Liesche J, Wei Y, Glass NL, Hao Z, Chen S.
    Appl Environ Microbiol; 2020 Jul 20; 86(15):. PubMed ID: 32471912
    [Abstract] [Full Text] [Related]

  • 7. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.
    Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JHD, Yang F, Glass NL.
    Fungal Genet Biol; 2014 Nov 20; 72():21-33. PubMed ID: 24881580
    [Abstract] [Full Text] [Related]

  • 8. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.
    Phillips CM, Beeson WT, Cate JH, Marletta MA.
    ACS Chem Biol; 2011 Dec 16; 6(12):1399-406. PubMed ID: 22004347
    [Abstract] [Full Text] [Related]

  • 9. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins.
    Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JH, Glass NL.
    Proc Natl Acad Sci U S A; 2012 Apr 17; 109(16):6012-7. PubMed ID: 22474347
    [Abstract] [Full Text] [Related]

  • 10. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J, Karlsson J, Lee D, Tjerneld F.
    Biotechnol Bioeng; 1998 Sep 05; 59(5):621-34. PubMed ID: 10099380
    [Abstract] [Full Text] [Related]

  • 11. Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures.
    Chundawat SP, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V, Dale BE.
    J Proteome Res; 2011 Oct 07; 10(10):4365-72. PubMed ID: 21678892
    [Abstract] [Full Text] [Related]

  • 12. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH.
    Science; 2010 Oct 01; 330(6000):84-6. PubMed ID: 20829451
    [Abstract] [Full Text] [Related]

  • 13. Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition.
    Lin H, Hildebrand A, Kasuga T, Fan Z.
    Enzyme Microb Technol; 2017 Apr 01; 99():25-31. PubMed ID: 28193328
    [Abstract] [Full Text] [Related]

  • 14. The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa.
    Xue F, Zhao Z, Gu S, Chen M, Xu J, Luo X, Li J, Tian C.
    BMC Biotechnol; 2023 Nov 29; 23(1):50. PubMed ID: 38031036
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of cellulases produced from four fungi cultured on furfural residues and microcrystalline cellulose.
    Liu HQ, Feng Y, Zhao DQ, Jiang JX.
    Biodegradation; 2012 Jun 29; 23(3):465-72. PubMed ID: 22116409
    [Abstract] [Full Text] [Related]

  • 16. Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants.
    Wu W, Hildebrand A, Kasuga T, Xiong X, Fan Z.
    Enzyme Microb Technol; 2013 Mar 05; 52(3):184-9. PubMed ID: 23410930
    [Abstract] [Full Text] [Related]

  • 17. The major cellulases CBH-1 and CBH-2 of Neurospora crassa rely on distinct ER cargo adaptors for efficient ER-exit.
    Starr TL, Gonçalves AP, Meshgin N, Glass NL.
    Mol Microbiol; 2018 Jan 05; 107(2):229-248. PubMed ID: 29131484
    [Abstract] [Full Text] [Related]

  • 18. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa.
    Sun J, Tian C, Diamond S, Glass NL.
    Eukaryot Cell; 2012 Apr 05; 11(4):482-93. PubMed ID: 22345350
    [Abstract] [Full Text] [Related]

  • 19. Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes.
    Wu VW, Dana CM, Iavarone AT, Clark DS, Glass NL.
    mBio; 2017 Jan 17; 8(1):. PubMed ID: 28096492
    [Abstract] [Full Text] [Related]

  • 20. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch.
    Li Q, Ng WT, Wu JC.
    Microb Cell Fact; 2014 Nov 11; 13():157. PubMed ID: 25384340
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.