These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


241 related items for PubMed ID: 21748199

  • 1. Light regulation of peroxidase activity by spiropyran functionalized carbon nanotubes used for label-free colorimetric detection of lysozyme.
    Song Y, Xu C, Wei W, Ren J, Qu X.
    Chem Commun (Camb); 2011 Aug 28; 47(32):9083-5. PubMed ID: 21748199
    [Abstract] [Full Text] [Related]

  • 2. Photo-controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes.
    Del Canto E, Natali M, Movia D, Giordani S.
    Phys Chem Chem Phys; 2012 May 07; 14(17):6034-43. PubMed ID: 22446851
    [Abstract] [Full Text] [Related]

  • 3. Spiropyran as a reusable chemosensor for selective colorimetric detection of aromatic thiols.
    Shiraishi Y, Yamamoto K, Sumiya S, Hirai T.
    Phys Chem Chem Phys; 2014 Jun 28; 16(24):12137-42. PubMed ID: 24616910
    [Abstract] [Full Text] [Related]

  • 4. Selective colorimetric sensing of Co(II) in aqueous media with a spiropyran-amide-dipicolylamine linkage under UV irradiation.
    Shiraishi Y, Matsunaga Y, Hirai T.
    Chem Commun (Camb); 2012 Jun 04; 48(44):5485-7. PubMed ID: 22543809
    [Abstract] [Full Text] [Related]

  • 5. Self-assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions.
    Li Y, Duan Y, Zheng J, Li J, Zhao W, Yang S, Yang R.
    Anal Chem; 2013 Dec 03; 85(23):11456-63. PubMed ID: 24164279
    [Abstract] [Full Text] [Related]

  • 6. A post-labeling strategy based on dye-induced peeling of the aptamer off single-walled carbon nanotubes for electrochemical aptasensing.
    Fu Y, Wang T, Bu L, Xie Q, Li P, Chen J, Yao S.
    Chem Commun (Camb); 2011 Mar 07; 47(9):2637-9. PubMed ID: 21234471
    [Abstract] [Full Text] [Related]

  • 7. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode.
    Zhu L, Yang R, Zhai J, Tian C.
    Biosens Bioelectron; 2007 Nov 30; 23(4):528-35. PubMed ID: 17764922
    [Abstract] [Full Text] [Related]

  • 8. Spiropyran-conjugated pluronic as a dual responsive colorimetric detector.
    Oh YJ, Nam JA, Al-Nahain A, Lee S, In I, Park SY.
    Macromol Rapid Commun; 2012 Nov 23; 33(22):1958-63. PubMed ID: 22907706
    [Abstract] [Full Text] [Related]

  • 9. Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism.
    Shiraishi Y, Tanaka K, Hirai T.
    ACS Appl Mater Interfaces; 2013 Apr 24; 5(8):3456-63. PubMed ID: 23510458
    [Abstract] [Full Text] [Related]

  • 10. Photo-modulation of horseradish peroxidase activity via covalent attachment of carboxylated-spiropyran dyes.
    Weston DG, Kirkham J, Cullen DC.
    Biochim Biophys Acta; 1999 Aug 05; 1428(2-3):463-7. PubMed ID: 10434066
    [Abstract] [Full Text] [Related]

  • 11. Simultaneous nucleophilic-substituted and electrostatic interactions for thermal switching of spiropyran: a new approach for rapid and selective colorimetric detection of thiol-containing amino acids.
    Li Y, Duan Y, Li J, Zheng J, Yu H, Yang R.
    Anal Chem; 2012 Jun 05; 84(11):4732-8. PubMed ID: 22545785
    [Abstract] [Full Text] [Related]

  • 12. Light-Responsive Size of Self-Assembled Spiropyran-Lysozyme Nanoparticles with Enzymatic Function.
    Moldenhauer D, Fuenzalida Werner JP, Strassert CA, Gröhn F.
    Biomacromolecules; 2019 Feb 11; 20(2):979-991. PubMed ID: 30570257
    [Abstract] [Full Text] [Related]

  • 13. Spiropyran-amidine: a molecular canary for visual detection of carbon dioxide gas.
    Darwish TA, Evans RA, James M, Hanley TL.
    Chemistry; 2011 Oct 04; 17(41):11399-404. PubMed ID: 21905137
    [No Abstract] [Full Text] [Related]

  • 14. Photomodulation of the electrode potential of a photochromic spiropyran-modified Au electrode in the presence of Zn2+: a new molecular switch based on the electronic transduction of the optical signals.
    Wen G, Yan J, Zhou Y, Zhang D, Mao L, Zhu D.
    Chem Commun (Camb); 2006 Jul 28; (28):3016-8. PubMed ID: 16832522
    [Abstract] [Full Text] [Related]

  • 15. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity.
    Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X.
    Chemistry; 2010 Mar 22; 16(12):3617-21. PubMed ID: 20191629
    [No Abstract] [Full Text] [Related]

  • 16. Photoisomerization of spiropyran for driving a molecular shuttle.
    Zhou W, Chen D, Li J, Xu J, Lv J, Liu H, Li Y.
    Org Lett; 2007 Sep 27; 9(20):3929-32. PubMed ID: 17803314
    [Abstract] [Full Text] [Related]

  • 17. Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor.
    Shiraishi Y, Adachi K, Itoh M, Hirai T.
    Org Lett; 2009 Aug 06; 11(15):3482-5. PubMed ID: 19719191
    [Abstract] [Full Text] [Related]

  • 18. Development of spiropyran-based electrochemical sensor via simultaneous photochemical and target-activatable electron transfer.
    Tao J, Li Y, Zhao P, Li J, Duan Y, Zhao W, Yang R.
    Biosens Bioelectron; 2014 Dec 15; 62():151-7. PubMed ID: 24997369
    [Abstract] [Full Text] [Related]

  • 19. Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor.
    Shiraishi Y, Sumiya S, Hirai T.
    Chem Commun (Camb); 2011 May 07; 47(17):4953-5. PubMed ID: 21431213
    [Abstract] [Full Text] [Related]

  • 20. "On-off-on" switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications.
    Wan S, Zheng Y, Shen J, Yang W, Yin M.
    ACS Appl Mater Interfaces; 2014 Nov 26; 6(22):19515-9. PubMed ID: 25394564
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.