These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


385 related items for PubMed ID: 21753057

  • 1. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.
    Butcher MT, White BJ, Hudzik NB, Gosnell WC, Parrish JH, Blob RW.
    J Exp Biol; 2011 Aug 01; 214(Pt 15):2631-40. PubMed ID: 21753057
    [Abstract] [Full Text] [Related]

  • 2. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.
    Gosnell WC, Butcher MT, Maie T, Blob RW.
    J Exp Biol; 2011 Oct 15; 214(Pt 20):3455-66. PubMed ID: 21957109
    [Abstract] [Full Text] [Related]

  • 3. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT, Espinoza NR, Cirilo SR, Blob RW.
    J Exp Biol; 2008 Aug 15; 211(Pt 15):2397-407. PubMed ID: 18626073
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna).
    Butcher MT, Blob RW.
    J Exp Biol; 2008 Apr 15; 211(Pt 8):1187-202. PubMed ID: 18375843
    [Abstract] [Full Text] [Related]

  • 6. Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion.
    Sheffield KM, Blob RW.
    J Exp Biol; 2011 Aug 01; 214(Pt 15):2603-15. PubMed ID: 21753055
    [Abstract] [Full Text] [Related]

  • 7. In vivo strains in the femur of the nine-banded armadillo (Dasypus novemcinctus).
    Copploe JV, Blob RW, Parrish JH, Butcher MT.
    J Morphol; 2015 Aug 01; 276(8):889-99. PubMed ID: 25809577
    [Abstract] [Full Text] [Related]

  • 8. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion.
    Reilly SM, Willey JS, Biknevicius AR, Blob RW.
    J Exp Biol; 2005 Mar 01; 208(Pt 6):993-1009. PubMed ID: 15767301
    [Abstract] [Full Text] [Related]

  • 9. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis).
    Blob RW, Biewener AA.
    J Exp Biol; 2001 Mar 01; 204(Pt 6):1099-122. PubMed ID: 11222128
    [Abstract] [Full Text] [Related]

  • 10. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP, Espinoza NR, Shah SR, Blob RW.
    Anat Rec (Hoboken); 2009 Jul 01; 292(7):935-44. PubMed ID: 19548305
    [Abstract] [Full Text] [Related]

  • 11. Skeletal strain patterns and growth in the emu hindlimb during ontogeny.
    Main RP, Biewener AA.
    J Exp Biol; 2007 Aug 01; 210(Pt 15):2676-90. PubMed ID: 17644682
    [Abstract] [Full Text] [Related]

  • 12. Biomechanical consequences of scaling.
    Biewener AA.
    J Exp Biol; 2005 May 01; 208(Pt 9):1665-76. PubMed ID: 15855398
    [Abstract] [Full Text] [Related]

  • 13. Patterns of strain in the macaque ulna during functional activity.
    Demes B, Stern JT, Hausman MR, Larson SG, McLeod KJ, Rubin CT.
    Am J Phys Anthropol; 1998 May 01; 106(1):87-100. PubMed ID: 9590526
    [Abstract] [Full Text] [Related]

  • 14. In vivo locomotor strain in the hindlimb bones of alligator mississippiensis and iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture.
    Blob RW, Biewener AA.
    J Exp Biol; 1999 May 01; 202 (Pt 9)():1023-46. PubMed ID: 10101104
    [Abstract] [Full Text] [Related]

  • 15. Evolution of limb bone loading and body size in varanid lizards.
    Clemente CJ, Withers PC, Thompson G, Lloyd D.
    J Exp Biol; 2011 Sep 15; 214(Pt 18):3013-20. PubMed ID: 21865513
    [Abstract] [Full Text] [Related]

  • 16. Correlation of muscle function and bone strain in the hindlimb of the river cooter turtle (Pseudemys concinna).
    Aiello BR, Blob RW, Butcher MT.
    J Morphol; 2013 Sep 15; 274(9):1060-9. PubMed ID: 23733583
    [Abstract] [Full Text] [Related]

  • 17. Evolution of the biomechanical material properties of the femur.
    Erickson GM, Catanese J, Keaveny TM.
    Anat Rec; 2002 Oct 01; 268(2):115-24. PubMed ID: 12221717
    [Abstract] [Full Text] [Related]

  • 18. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD, Demes B, Jungers WL, Biknevicius AR, Heinrich RE, Runestad JA.
    J Hum Evol; 2000 Sep 01; 39(3):297-325. PubMed ID: 10964531
    [Abstract] [Full Text] [Related]

  • 19. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH, Rivera JP, Zhang C, Ebba SA.
    J Morphol; 2008 Mar 01; 269(3):313-8. PubMed ID: 17957711
    [Abstract] [Full Text] [Related]

  • 20. Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion.
    Carrano MT, Biewener AA.
    J Morphol; 1999 Jun 01; 240(3):237-49. PubMed ID: 10367398
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.