These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 21755456
1. Molecular network dynamics of cell cycle control: transitions to start and finish. Csikász-Nagy A, Palmisano A, Zámborszky J. Methods Mol Biol; 2011; 761():277-91. PubMed ID: 21755456 [Abstract] [Full Text] [Related]
2. Molecular Network Dynamics of Cell Cycle Control: Periodicity of Start and Finish. Palmisano A, Zámborszky J, Oguz C, Csikász-Nagy A. Methods Mol Biol; 2017; 1524():331-349. PubMed ID: 27815913 [Abstract] [Full Text] [Related]
3. A data integration approach for cell cycle analysis oriented to model simulation in systems biology. Alfieri R, Merelli I, Mosca E, Milanesi L. BMC Syst Biol; 2007 Aug 01; 1():35. PubMed ID: 17678529 [Abstract] [Full Text] [Related]
4. Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit. Eriksson O, Brinne B, Zhou Y, Björkegren J, Tegnér J. IET Syst Biol; 2009 Mar 01; 3(2):113-29. PubMed ID: 19292565 [Abstract] [Full Text] [Related]
5. A model for a network of phosphorylation-dephosphorylation cycles displaying the dynamics of dominoes and clocks. Gonze D, Goldbeter A. J Theor Biol; 2001 May 21; 210(2):167-86. PubMed ID: 11371173 [Abstract] [Full Text] [Related]
6. Co-evolution of transcriptional and post-translational cell-cycle regulation. Jensen LJ, Jensen TS, de Lichtenberg U, Brunak S, Bork P. Nature; 2006 Oct 05; 443(7111):594-7. PubMed ID: 17006448 [Abstract] [Full Text] [Related]
8. From simple to complex patterns of oscillatory behavior in a model for the mammalian cell cycle containing multiple oscillatory circuits. Gérard C, Goldbeter A. Chaos; 2010 Dec 05; 20(4):045109. PubMed ID: 21198121 [Abstract] [Full Text] [Related]
10. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Fauré A, Naldi A, Chaouiya C, Thieffry D. Bioinformatics; 2006 Jul 15; 22(14):e124-31. PubMed ID: 16873462 [Abstract] [Full Text] [Related]
11. Irreversible cell-cycle transitions are due to systems-level feedback. Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A. Nat Cell Biol; 2007 Jul 15; 9(7):724-8. PubMed ID: 17603504 [Abstract] [Full Text] [Related]
13. Checking cell size in budding yeast: a systems biology approach. Alberghina L, Rossi RL, Wanke V, Querin L, Vanoni M. Ital J Biochem; 2003 Mar 15; 52(1):55-7. PubMed ID: 12833640 [Abstract] [Full Text] [Related]
14. Analyzing steady states of dynamics of bio-molecules from the structure of regulatory networks. Mochizuki A, Saito D. J Theor Biol; 2010 Sep 21; 266(2):323-35. PubMed ID: 20553943 [Abstract] [Full Text] [Related]
18. Interplay of transcriptional and proteolytic regulation in driving robust cell cycle progression. Freire P, Vinod PK, Novak B. Mol Biosyst; 2012 Mar 21; 8(3):863-70. PubMed ID: 22237794 [Abstract] [Full Text] [Related]
19. Modular logical modelling of the budding yeast cell cycle. Fauré A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D. Mol Biosyst; 2009 Dec 21; 5(12):1787-96. PubMed ID: 19763337 [Abstract] [Full Text] [Related]
20. Dynamical approaches to modeling developmental gene regulatory networks. Geard N, Willadsen K. Birth Defects Res C Embryo Today; 2009 Jun 21; 87(2):131-42. PubMed ID: 19530129 [Abstract] [Full Text] [Related] Page: [Next] [New Search]