These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 2176255

  • 1. Reactive oxygen molecule-mediated injury in endothelial and renal tubular epithelial cells in vitro.
    Andreoli SP, McAteer JA.
    Kidney Int; 1990 Nov; 38(5):785-94. PubMed ID: 2176255
    [Abstract] [Full Text] [Related]

  • 2. Hydrogen peroxide cytotoxicity in LLC-PK1 cells: a role for iron.
    Walker PD, Shah SV.
    Kidney Int; 1991 Nov; 40(5):891-8. PubMed ID: 1662314
    [Abstract] [Full Text] [Related]

  • 3. Oxygen free radical injury of IEC-18 small intestinal epithelial cell monolayers.
    Ma TY, Hollander D, Freeman D, Nguyen T, Krugliak P.
    Gastroenterology; 1991 Jun; 100(6):1533-43. PubMed ID: 1850372
    [Abstract] [Full Text] [Related]

  • 4. DNA strand break formation following exposure of bovine pulmonary artery and aortic endothelial cells to reactive oxygen products.
    Spragg RG.
    Am J Respir Cell Mol Biol; 1991 Jan; 4(1):4-10. PubMed ID: 1846077
    [Abstract] [Full Text] [Related]

  • 5. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury.
    Hiraishi H, Terano A, Razandi M, Pedram A, Sugimoto T, Harada T, Ivey KJ.
    J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293
    [Abstract] [Full Text] [Related]

  • 6. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells.
    Thamilselvan S, Byer KJ, Hackett RL, Khan SR.
    J Urol; 2000 Jul; 164(1):224-9. PubMed ID: 10840464
    [Abstract] [Full Text] [Related]

  • 7. Role of glutathione in protecting endothelial cells against hydrogen peroxide oxidant injury.
    Andreoli SP, Mallett CP, Bergstein JM.
    J Lab Clin Med; 1986 Sep; 108(3):190-8. PubMed ID: 3091744
    [Abstract] [Full Text] [Related]

  • 8. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR, Inauen W, Bacon BR, Grisham MB.
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [Abstract] [Full Text] [Related]

  • 9. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system.
    Berman RS, Martin W.
    Br J Pharmacol; 1993 Apr; 108(4):920-6. PubMed ID: 8485631
    [Abstract] [Full Text] [Related]

  • 10. Antioxidant defense mechanisms of endothelial cells and renal tubular epithelial cells in vitro: role of the glutathione redox cycle and catalase.
    Andreoli SP, Mallett C, McAteer JA, Williams LV.
    Pediatr Res; 1992 Sep; 32(3):360-5. PubMed ID: 1408476
    [Abstract] [Full Text] [Related]

  • 11. Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells.
    Scott JA, Khaw BA, Homcy CJ, Rabito CA.
    Biochim Biophys Acta; 1987 Feb 12; 897(1):25-32. PubMed ID: 3801479
    [Abstract] [Full Text] [Related]

  • 12. Captopril scavenges hydrogen peroxide and reduces, but does not eliminate, oxidant-induced cell injury.
    Andreoli SP.
    Am J Physiol; 1993 Jan 12; 264(1 Pt 2):F120-7. PubMed ID: 8381600
    [Abstract] [Full Text] [Related]

  • 13. Differential role of reactive oxygen species in chemical hypoxia-induced cell injury in opossum kidney cells and rabbit renal cortical slices.
    Kim YK, Lee SK, Ha MS, Woo JS, Jung JS.
    Exp Nephrol; 2002 Jan 12; 10(4):275-84. PubMed ID: 12097831
    [Abstract] [Full Text] [Related]

  • 14. Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells.
    Hagar H, Ueda N, Shah SV.
    Am J Physiol; 1996 Jul 12; 271(1 Pt 2):F209-15. PubMed ID: 8760263
    [Abstract] [Full Text] [Related]

  • 15. Role of hydrogen peroxide in cyclosporine-induced renal tubular cell (LLC-PK1) injury.
    Nishida M, Ogawa H, Tamai M, Ishiwari K, Hamaoka K.
    J Pharmacol Sci; 2003 Mar 12; 91(3):255-8. PubMed ID: 12686749
    [Abstract] [Full Text] [Related]

  • 16. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.
    Baek SM, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK.
    J Lab Clin Med; 2003 Sep 12; 142(3):178-86. PubMed ID: 14532906
    [Abstract] [Full Text] [Related]

  • 17. Mechanisms of endothelial cell killing by H2O2 or products of activated neutrophils.
    Ward PA.
    Am J Med; 1991 Sep 30; 91(3C):89S-94S. PubMed ID: 1928218
    [Abstract] [Full Text] [Related]

  • 18. H2O2-mediated cytotoxicity of rat pulmonary endothelial cells. Changes in adenosine triphosphate and purine products and effects of protective interventions.
    Varani J, Phan SH, Gibbs DF, Ryan US, Ward PA.
    Lab Invest; 1990 Nov 30; 63(5):683-9. PubMed ID: 2172653
    [Abstract] [Full Text] [Related]

  • 19. Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose) polymerase activation causing NAD depletion and altered energy balance.
    Thies RL, Autor AP.
    Arch Biochem Biophys; 1991 May 01; 286(2):353-63. PubMed ID: 1654786
    [Abstract] [Full Text] [Related]

  • 20. Reactive oxygen-mediated damage to murine mammary tumor cells.
    Paul LA, Fulton AM, Heppner GH.
    Mutat Res; 1989 Dec 01; 215(2):223-34. PubMed ID: 2557550
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.