These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


333 related items for PubMed ID: 21763061

  • 1. The influence of the precursor and synthesis method on the CO2 capture capacity of carpet waste-based sorbents.
    Olivares-Marín M, García S, Pevida C, Wong MS, Maroto-Valer M.
    J Environ Manage; 2011 Oct; 92(10):2810-7. PubMed ID: 21763061
    [Abstract] [Full Text] [Related]

  • 2. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT).
    Hu X, Radosz M, Cychosz KA, Thommes M.
    Environ Sci Technol; 2011 Aug 15; 45(16):7068-74. PubMed ID: 21721529
    [Abstract] [Full Text] [Related]

  • 3. Utilization of agricultural waste corn cob for the preparation of carbon adsorbent.
    Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF.
    J Environ Sci Health B; 2001 Sep 15; 36(5):677-86. PubMed ID: 11599729
    [Abstract] [Full Text] [Related]

  • 4. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.
    Meng LY, Park SJ.
    J Colloid Interface Sci; 2010 Dec 15; 352(2):498-503. PubMed ID: 20851404
    [Abstract] [Full Text] [Related]

  • 5. Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology.
    Tan IA, Ahmad AL, Hameed BH.
    J Hazard Mater; 2008 May 01; 153(1-2):709-17. PubMed ID: 17935879
    [Abstract] [Full Text] [Related]

  • 6. Sorbents for CO2 capture from high carbon fly ashes.
    Maroto-Valer MM, Lu Z, Zhang Y, Tang Z.
    Waste Manag; 2008 Nov 01; 28(11):2320-8. PubMed ID: 18093818
    [Abstract] [Full Text] [Related]

  • 7. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.
    Fu H, Yang L, Wan Y, Xu Z, Zhu D.
    J Environ Qual; 2011 Nov 01; 40(6):1886-94. PubMed ID: 22031572
    [Abstract] [Full Text] [Related]

  • 8. Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions.
    Salman JM, Hameed BH.
    J Hazard Mater; 2010 Mar 15; 175(1-3):133-7. PubMed ID: 19879687
    [Abstract] [Full Text] [Related]

  • 9. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.
    Chang PH, Chang YP, Chen SY, Yu CT, Chyou YP.
    ChemSusChem; 2011 Dec 16; 4(12):1844-51. PubMed ID: 22072595
    [Abstract] [Full Text] [Related]

  • 10. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.
    Choi S, Gray ML, Jones CW.
    ChemSusChem; 2011 May 23; 4(5):628-35. PubMed ID: 21548105
    [Abstract] [Full Text] [Related]

  • 11. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air.
    Choi S, Drese JH, Eisenberger PM, Jones CW.
    Environ Sci Technol; 2011 Mar 15; 45(6):2420-7. PubMed ID: 21323309
    [Abstract] [Full Text] [Related]

  • 12. Yeast-based microporous carbon materials for carbon dioxide capture.
    Shen W, He Y, Zhang S, Li J, Fan W.
    ChemSusChem; 2012 Jul 15; 5(7):1274-9. PubMed ID: 22696279
    [Abstract] [Full Text] [Related]

  • 13. From biomass wastes to highly efficient CO₂ adsorbents: graphitisation of chitosan and alginate biopolymers.
    Primo A, Forneli A, Corma A, García H.
    ChemSusChem; 2012 Nov 15; 5(11):2207-14. PubMed ID: 22969059
    [Abstract] [Full Text] [Related]

  • 14. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.
    Wang X, Qiu J, Ning P, Ren X, Li Z, Yin Z, Chen W, Liu W.
    J Hazard Mater; 2012 Aug 30; 229-230():128-36. PubMed ID: 22704776
    [Abstract] [Full Text] [Related]

  • 15. In situ synthesis of polymer-modified mesoporous carbon CMK-3 composites for CO2 sequestration.
    Hwang CC, Jin Z, Lu W, Sun Z, Alemany LB, Lomeda JR, Tour JM.
    ACS Appl Mater Interfaces; 2011 Dec 30; 3(12):4782-6. PubMed ID: 22091700
    [Abstract] [Full Text] [Related]

  • 16. Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation.
    Yang M, Guo L, Hu G, Hu X, Xu L, Chen J, Dai W, Fan M.
    Environ Sci Technol; 2015 Jun 02; 49(11):7063-70. PubMed ID: 25961379
    [Abstract] [Full Text] [Related]

  • 17. Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture.
    Zhang Z, Wang K, Atkinson JD, Yan X, Li X, Rood MJ, Yan Z.
    J Hazard Mater; 2012 Aug 30; 229-230():183-91. PubMed ID: 22717067
    [Abstract] [Full Text] [Related]

  • 18. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption.
    Liu Z, Du Z, Song H, Wang C, Subhan F, Xing W, Yan Z.
    J Colloid Interface Sci; 2014 Feb 15; 416():124-32. PubMed ID: 24370411
    [Abstract] [Full Text] [Related]

  • 19. CO2 capture in different carbon materials.
    Jiménez V, Ramírez-Lucas A, Díaz JA, Sánchez P, Romero A.
    Environ Sci Technol; 2012 Jul 03; 46(13):7407-14. PubMed ID: 22679919
    [Abstract] [Full Text] [Related]

  • 20. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob.
    Tseng RL, Tseng SK.
    J Colloid Interface Sci; 2005 Jul 15; 287(2):428-37. PubMed ID: 15925607
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.