These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
117 related items for PubMed ID: 21766372
21. Modification of the proteolytic fragmentation pattern upon oxidation of cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase. Marín-Navarro J, Moreno J. Biochemistry; 2003 Dec 23; 42(50):14930-8. PubMed ID: 14674769 [Abstract] [Full Text] [Related]
22. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, Cadenas E. Biochemistry; 2005 Sep 13; 44(36):11986-96. PubMed ID: 16142896 [Abstract] [Full Text] [Related]
23. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Hennrich ML, Boersema PJ, van den Toorn H, Mischerikow N, Heck AJ, Mohammed S. Anal Chem; 2009 Sep 15; 81(18):7814-22. PubMed ID: 19689115 [Abstract] [Full Text] [Related]
24. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2. Ishii T, Uchida K. Chem Res Toxicol; 2004 Oct 15; 17(10):1313-22. PubMed ID: 15487891 [Abstract] [Full Text] [Related]
26. Protease analysis by neoepitope approach reveals the activation of MMP-9 is achieved proteolytically in a test tissue cartilage model involved in bone formation. Lee ER, Lamplugh L, Kluczyk B, Mort JS, Leblond CP. J Histochem Cytochem; 2006 Sep 15; 54(9):965-80. PubMed ID: 16709729 [Abstract] [Full Text] [Related]
28. The origin and control of ex vivo oxidative peptide modifications prior to mass spectrometry analysis. Froelich JM, Reid GE. Proteomics; 2008 Apr 23; 8(7):1334-45. PubMed ID: 18306178 [Abstract] [Full Text] [Related]
29. Novel oxidative modifications in redox-active cysteine residues. Jeong J, Jung Y, Na S, Jeong J, Lee E, Kim MS, Choi S, Shin DH, Paek E, Lee HY, Lee KJ. Mol Cell Proteomics; 2011 Mar 23; 10(3):M110.000513. PubMed ID: 21148632 [Abstract] [Full Text] [Related]
31. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting. Xu G, Chance MR. Anal Chem; 2005 Apr 15; 77(8):2437-49. PubMed ID: 15828779 [Abstract] [Full Text] [Related]
32. Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation. Srikanth R, Wilson J, Bridgewater JD, Numbers JR, Lim J, Olbris MR, Kettani A, Vachet RW. J Am Soc Mass Spectrom; 2007 Aug 15; 18(8):1499-506. PubMed ID: 17583533 [Abstract] [Full Text] [Related]
33. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome. Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ. Anal Chem; 2013 Apr 02; 85(7):3774-80. PubMed ID: 23438843 [Abstract] [Full Text] [Related]
34. Characterization by tandem mass spectrometry of stable cysteine sulfenic acid in a cysteine switch peptide of matrix metalloproteinases. Shetty V, Spellman DS, Neubert TA. J Am Soc Mass Spectrom; 2007 Aug 02; 18(8):1544-51. PubMed ID: 17604642 [Abstract] [Full Text] [Related]
39. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H. J Biol Chem; 2001 Aug 03; 276(31):29596-602. PubMed ID: 11395496 [Abstract] [Full Text] [Related]
40. Unconventional activation mechanisms of MMP-26, a human matrix metalloproteinase with a unique PHCGXXD cysteine-switch motif. Marchenko ND, Marchenko GN, Strongin AY. J Biol Chem; 2002 May 24; 277(21):18967-72. PubMed ID: 11889136 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]