These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 2176859

  • 1. CO dissociation in cytochrome c peroxidase: site-directed mutagenesis shows that distal Arg 48 influences CO dissociation rates.
    Miller MA, Mauro JM, Smulevich G, Coletta M, Kraut J, Traylor TG.
    Biochemistry; 1990 Oct 23; 29(42):9978-88. PubMed ID: 2176859
    [Abstract] [Full Text] [Related]

  • 2. CO recombination in cytochrome c peroxidase: effect of the local heme environment on CO binding explored through site-directed mutagenesis.
    Miller MA, Coletta M, Mauro JM, Putnam LD, Farnum MF, Kraut J, Traylor TG.
    Biochemistry; 1990 Feb 20; 29(7):1777-91. PubMed ID: 2158813
    [Abstract] [Full Text] [Related]

  • 3. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase.
    Smulevich G, Miller MA, Kraut J, Spiro TG.
    Biochemistry; 1991 Oct 01; 30(39):9546-58. PubMed ID: 1654102
    [Abstract] [Full Text] [Related]

  • 4. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis.
    Wang JM, Mauro M, Edwards SL, Oatley SJ, Fishel LA, Ashford VA, Xuong NH, Kraut J.
    Biochemistry; 1990 Aug 07; 29(31):7160-73. PubMed ID: 2169873
    [Abstract] [Full Text] [Related]

  • 5. Cytochrome c peroxidase mutant active site structures probed by resonance Raman and infrared signatures of the CO adducts.
    Smulevich G, Mauro JM, Fishel LA, English AM, Kraut J, Spiro TG.
    Biochemistry; 1988 Jul 26; 27(15):5486-92. PubMed ID: 2846040
    [Abstract] [Full Text] [Related]

  • 6. Effect of arginine-48 replacement on the reaction between cytochrome c peroxidase and hydrogen peroxide.
    Vitello LB, Erman JE, Miller MA, Wang J, Kraut J.
    Biochemistry; 1993 Sep 21; 32(37):9807-18. PubMed ID: 8396973
    [Abstract] [Full Text] [Related]

  • 7. Site-directed mutagenesis of yeast cytochrome c peroxidase shows histidine 181 is not required for oxidation of ferrocytochrome c.
    Miller MA, Hazzard JT, Mauro JM, Edwards SL, Simons PC, Tollin G, Kraut J.
    Biochemistry; 1988 Dec 27; 27(26):9081-8. PubMed ID: 2853973
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Comparative proton NMR analysis of wild-type cytochrome c peroxidase from yeast, the recombinant enzyme from Escherichia coli, and an Asp-235----Asn-235 mutant.
    Satterlee JD, Erman JE, Mauro JM, Kraut J.
    Biochemistry; 1990 Sep 18; 29(37):8797-804. PubMed ID: 2176836
    [Abstract] [Full Text] [Related]

  • 10. Influence of protein environment on magnetic circular dichroism spectral properties of ferric and ferrous ligand complexes of yeast cytochrome c peroxidase.
    Pond AE, Sono M, Elenkova EA, Goodin DB, English AM, Dawson JH.
    Biospectroscopy; 1999 Sep 18; 5(5 Suppl):S42-52. PubMed ID: 10512537
    [Abstract] [Full Text] [Related]

  • 11. Cytochrome c peroxidase binds two molecules of cytochrome c: evidence for a low-affinity, electron-transfer-active site on cytochrome c peroxidase.
    Stemp ED, Hoffman BM.
    Biochemistry; 1993 Oct 12; 32(40):10848-65. PubMed ID: 8399235
    [Abstract] [Full Text] [Related]

  • 12. Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I.
    Erman JE, Vitello LB, Miller MA, Shaw A, Brown KA, Kraut J.
    Biochemistry; 1993 Sep 21; 32(37):9798-806. PubMed ID: 8396972
    [Abstract] [Full Text] [Related]

  • 13. Reversible acidic-alkaline transition of the carbon monoxide complex of cytochrome c peroxidase.
    Iizuka T, Makino R, Ishimura Y, Yonetani T.
    J Biol Chem; 1985 Feb 10; 260(3):1407-12. PubMed ID: 2981856
    [Abstract] [Full Text] [Related]

  • 14. Reaction of ferrous cytochrome c peroxidase with dioxygen: site-directed mutagenesis provides evidence for rapid reduction of dioxygen by intramolecular electron transfer from the compound I radical site.
    Miller MA, Bandyopadhyay D, Mauro JM, Traylor TG, Kraut J.
    Biochemistry; 1992 Mar 17; 31(10):2789-97. PubMed ID: 1312347
    [Abstract] [Full Text] [Related]

  • 15. Reduction potential of yeast cytochrome c peroxidase and three distal histidine mutants: dependence on pH.
    DiCarlo CM, Vitello LB, Erman JE.
    J Inorg Biochem; 2011 Apr 17; 105(4):532-7. PubMed ID: 21334283
    [Abstract] [Full Text] [Related]

  • 16. Different pathways of radical translocation in yeast cytochrome c peroxidase and its W191F mutant on reaction with H(2)O(2) suggest an antioxidant role.
    Tsaprailis G, English AM.
    J Biol Inorg Chem; 2003 Feb 17; 8(3):248-55. PubMed ID: 12589560
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Apolar distal pocket mutants of yeast cytochrome c peroxidase: Binding of imidazole, 1-methylimidazole and 4-nitroimidazole to the triAla, triVal, and triLeu variants.
    Bidwai A, Ayala C, Vitello LB, Erman JE.
    Biochim Biophys Acta; 2015 Aug 17; 1854(8):919-29. PubMed ID: 25900360
    [Abstract] [Full Text] [Related]

  • 20. Regulation of interprotein electron transfer by Trp 191 of cytochrome c peroxidase.
    Miller MA, Vitello L, Erman JE.
    Biochemistry; 1995 Sep 19; 34(37):12048-58. PubMed ID: 7547943
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.