These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
366 related items for PubMed ID: 21770777
1. New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch. Francki MG, Shankar M, Walker E, Loughman R, Golzar H, Ohm H. Phytopathology; 2011 Nov; 101(11):1278-84. PubMed ID: 21770777 [Abstract] [Full Text] [Related]
2. Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG. Phytopathology; 2008 Aug; 98(8):886-93. PubMed ID: 18943206 [Abstract] [Full Text] [Related]
3. Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM. Phytopathology; 2011 Nov; 101(11):1301-10. PubMed ID: 21692647 [Abstract] [Full Text] [Related]
4. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. Abeysekara NS, Faris JD, Chao S, McClean PE, Friesen TL. Phytopathology; 2012 Jan; 102(1):94-104. PubMed ID: 21864084 [Abstract] [Full Text] [Related]
5. High-density SNP mapping reveals closely linked QTL for resistance to Stagonospora nodorum blotch (SNB) in flag leaf and glume of hexaploid wheat. Francki MG, Walker E, Li DA, Forrest K. Genome; 2018 Feb; 61(2):145-149. PubMed ID: 29237140 [Abstract] [Full Text] [Related]
6. Quantitative trait loci for adult-plant resistance to Mycosphaerella graminicola in two winter wheat populations. Risser P, Ebmeyer E, Korzun V, Hartl L, Miedaner T. Phytopathology; 2011 Oct; 101(10):1209-16. PubMed ID: 21635143 [Abstract] [Full Text] [Related]
7. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Lin M, Corsi B, Ficke A, Tan KC, Cockram J, Lillemo M. Theor Appl Genet; 2020 Mar; 133(3):785-808. PubMed ID: 31996971 [Abstract] [Full Text] [Related]
8. The Tsn1-ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Liu Z, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD. Genome; 2006 Oct; 49(10):1265-73. PubMed ID: 17213908 [Abstract] [Full Text] [Related]
9. Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer MM. Theor Appl Genet; 2005 Jul; 111(2):325-36. PubMed ID: 15895203 [Abstract] [Full Text] [Related]
10. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B. Theor Appl Genet; 2003 Nov; 107(7):1226-34. PubMed ID: 12928778 [Abstract] [Full Text] [Related]
11. Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Friesen TL, Chu CG, Liu ZH, Xu SS, Halley S, Faris JD. Theor Appl Genet; 2009 May; 118(8):1489-97. PubMed ID: 19266177 [Abstract] [Full Text] [Related]
12. Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cowger C. Phytopathology; 2012 May; 102(5):498-505. PubMed ID: 22494247 [Abstract] [Full Text] [Related]
13. Molecular mapping and improvement of leaf rust resistance in wheat breeding lines. Tsilo TJ, Kolmer JA, Anderson JA. Phytopathology; 2014 Aug; 104(8):865-70. PubMed ID: 24521485 [Abstract] [Full Text] [Related]
14. Genetic analysis of disease susceptibility contributed by the compatible Tsn1-SnToxA and Snn1-SnTox1 interactions in the wheat-Stagonospora nodorum pathosystem. Chu CG, Faris JD, Xu SS, Friesen TL. Theor Appl Genet; 2010 May; 120(7):1451-9. PubMed ID: 20084492 [Abstract] [Full Text] [Related]
15. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Friesen TL, Meinhardt SW, Faris JD. Plant J; 2007 Aug; 51(4):681-92. PubMed ID: 17573802 [Abstract] [Full Text] [Related]
16. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD. Mol Genet Genomics; 2016 Feb; 291(1):107-19. PubMed ID: 26187026 [Abstract] [Full Text] [Related]
17. Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin-sensitive cultivars. Oliver RP, Lord M, Rybak K, Faris JD, Solomon PS. Phytopathology; 2008 May; 98(5):488-91. PubMed ID: 18943215 [Abstract] [Full Text] [Related]
18. Genes Associated with Foliar Resistance to Septoria Nodorum Blotch of Hexaploid Wheat (Triticum aestivum L.). Li D, Walker E, Francki M. Int J Mol Sci; 2021 May 25; 22(11):. PubMed ID: 34070394 [Abstract] [Full Text] [Related]
19. Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Faris JD, Zhang Z, Rasmussen JB, Friesen TL. Mol Plant Microbe Interact; 2011 Dec 25; 24(12):1419-26. PubMed ID: 21770771 [Abstract] [Full Text] [Related]
20. Reevaluation of a tetraploid wheat population indicates that the Tsn1-ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility. Faris JD, Friesen TL. Phytopathology; 2009 Aug 25; 99(8):906-12. PubMed ID: 19594309 [Abstract] [Full Text] [Related] Page: [Next] [New Search]