These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
418 related items for PubMed ID: 21772262
1. A dynamic model of proteome changes reveals new roles for transcript alteration in yeast. Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP. Mol Syst Biol; 2011 Jul 19; 7():514. PubMed ID: 21772262 [Abstract] [Full Text] [Related]
2. Playing tag with the yeast proteome. Andrews BJ, Bader GD, Boone C. Nat Biotechnol; 2003 Nov 19; 21(11):1297-9. PubMed ID: 14595360 [No Abstract] [Full Text] [Related]
3. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae. Garcia-Albornoz M, Holman SW, Antonisse T, Daran-Lapujade P, Teusink B, Beynon RJ, Hubbard SJ. Mol Omics; 2020 Feb 17; 16(1):59-72. PubMed ID: 31868867 [Abstract] [Full Text] [Related]
4. Species-wide quantitative transcriptomes and proteomes reveal distinct genetic control of gene expression variation in yeast. Teyssonnière EM, Trébulle P, Muenzner J, Loegler V, Ludwig D, Amari F, Mülleder M, Friedrich A, Hou J, Ralser M, Schacherer J. Proc Natl Acad Sci U S A; 2024 May 07; 121(19):e2319211121. PubMed ID: 38696467 [Abstract] [Full Text] [Related]
5. A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. Scherrer T, Mittal N, Janga SC, Gerber AP. PLoS One; 2010 Nov 11; 5(11):e15499. PubMed ID: 21124907 [Abstract] [Full Text] [Related]
6. Quantitative protein and mRNA profiling shows selective post-transcriptional control of protein expression by vasopressin in kidney cells. Khositseth S, Pisitkun T, Slentz DH, Wang G, Hoffert JD, Knepper MA, Yu MJ. Mol Cell Proteomics; 2011 Jan 11; 10(1):M110.004036. PubMed ID: 20940332 [Abstract] [Full Text] [Related]
7. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. de Groot MJL, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EAF, Reinders MJT, Pronk JT, Heck AJR, Slijper M. Microbiology (Reading); 2007 Nov 11; 153(Pt 11):3864-3878. PubMed ID: 17975095 [Abstract] [Full Text] [Related]
8. Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Lahtvee PJ, Sánchez BJ, Smialowska A, Kasvandik S, Elsemman IE, Gatto F, Nielsen J. Cell Syst; 2017 May 24; 4(5):495-504.e5. PubMed ID: 28365149 [Abstract] [Full Text] [Related]
9. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p. Bailey UM, Schulz BL. J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr 01; 923-924():16-21. PubMed ID: 23454304 [Abstract] [Full Text] [Related]
10. The protein expression landscape of mitosis and meiosis in diploid budding yeast. Becker E, Com E, Lavigne R, Guilleux MH, Evrard B, Pineau C, Primig M. J Proteomics; 2017 Mar 06; 156():5-19. PubMed ID: 28057603 [Abstract] [Full Text] [Related]
11. Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis. Cheng Z, Otto GM, Powers EN, Keskin A, Mertins P, Carr SA, Jovanovic M, Brar GA. Cell; 2018 Feb 22; 172(5):910-923.e16. PubMed ID: 29474919 [Abstract] [Full Text] [Related]
12. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M. Nature; 2008 Oct 30; 455(7217):1251-4. PubMed ID: 18820680 [Abstract] [Full Text] [Related]
13. Neutron-encoded mass signatures for multiplexed proteome quantification. Hebert AS, Merrill AE, Bailey DJ, Still AJ, Westphall MS, Strieter ER, Pagliarini DJ, Coon JJ. Nat Methods; 2013 Apr 30; 10(4):332-4. PubMed ID: 23435260 [Abstract] [Full Text] [Related]
15. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ. Physiol Genomics; 2007 Jun 19; 30(1):35-43. PubMed ID: 17327492 [Abstract] [Full Text] [Related]
16. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism. Matsuda F, Kinoshita S, Nishino S, Tomita A, Shimizu H. PLoS One; 2017 Jun 19; 12(2):e0172742. PubMed ID: 28241048 [Abstract] [Full Text] [Related]
17. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Beyer A, Hollunder J, Nasheuer HP, Wilhelm T. Mol Cell Proteomics; 2004 Nov 19; 3(11):1083-92. PubMed ID: 15326222 [Abstract] [Full Text] [Related]
18. Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data. Wu G, Nie L, Zhang W. Curr Microbiol; 2008 Jul 19; 57(1):18-22. PubMed ID: 18363056 [Abstract] [Full Text] [Related]
19. Decoupling Yeast Cell Division and Stress Defense Implicates mRNA Repression in Translational Reallocation during Stress. Ho YH, Shishkova E, Hose J, Coon JJ, Gasch AP. Curr Biol; 2018 Aug 20; 28(16):2673-2680.e4. PubMed ID: 30078561 [Abstract] [Full Text] [Related]
20. Global analysis of protein expression in yeast. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. Nature; 2003 Oct 16; 425(6959):737-41. PubMed ID: 14562106 [Abstract] [Full Text] [Related] Page: [Next] [New Search]