These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


334 related items for PubMed ID: 21775647

  • 1. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans.
    Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E.
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1078-87. PubMed ID: 21775647
    [Abstract] [Full Text] [Related]

  • 2. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers.
    Roels B, Thomas C, Bentley DJ, Mercier J, Hayot M, Millet G.
    J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498
    [Abstract] [Full Text] [Related]

  • 3. Impairment of maximal aerobic power with moderate hypoxia in endurance athletes: do skeletal muscle mitochondria play a role?
    Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer-Wolf E, Lampert E, Piquard F, Geny B, Mettauer B, Ventura-Clapier R, Richard R.
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R558-66. PubMed ID: 20007521
    [Abstract] [Full Text] [Related]

  • 4. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O, Goret L, Caillaud C, Mercier J, Obert P, Candau R, Py G.
    Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885
    [Abstract] [Full Text] [Related]

  • 5. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria.
    Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E.
    Methods Mol Biol; 2018 Jun; 1782():31-70. PubMed ID: 29850993
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Respiratory muscle endurance training: effect on normoxic and hypoxic exercise performance.
    Keramidas ME, Debevec T, Amon M, Kounalakis SN, Simunic B, Mekjavic IB.
    Eur J Appl Physiol; 2010 Mar; 108(4):759-69. PubMed ID: 20187281
    [Abstract] [Full Text] [Related]

  • 8. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle.
    Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R.
    J Appl Physiol (1985); 2006 Apr; 100(4):1249-57. PubMed ID: 16339351
    [Abstract] [Full Text] [Related]

  • 9. Endurance exercise training changes the limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the capacity to utilize O2 to the capacity to transport O2.
    Broxterman RM, Wagner PD, Richardson RS.
    J Physiol; 2024 Feb; 602(3):445-459. PubMed ID: 38048175
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction.
    Ramos SV, Turnbull PC, MacPherson RE, LeBlanc PJ, Ward WE, Peters SJ.
    Exp Physiol; 2015 Apr 01; 100(4):450-62. PubMed ID: 25663294
    [Abstract] [Full Text] [Related]

  • 12. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle.
    Daussin FN, Zoll J, Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer E, Ventura-Clapier R, Mettauer B, Piquard F, Geny B, Richard R.
    J Appl Physiol (1985); 2008 May 01; 104(5):1436-41. PubMed ID: 18292295
    [Abstract] [Full Text] [Related]

  • 13. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
    Fiorenza M, Lemminger AK, Marker M, Eibye K, Iaia FM, Bangsbo J, Hostrup M.
    FASEB J; 2019 Aug 01; 33(8):8976-8989. PubMed ID: 31136218
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age.
    Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS.
    J Clin Endocrinol Metab; 2015 Apr 01; 100(4):1654-63. PubMed ID: 25599385
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women.
    Devries MC, Samjoo IA, Hamadeh MJ, McCready C, Raha S, Watt MJ, Steinberg GR, Tarnopolsky MA.
    J Clin Endocrinol Metab; 2013 Dec 01; 98(12):4852-62. PubMed ID: 24081737
    [Abstract] [Full Text] [Related]

  • 19. Effect of endurance training on oxidative and antioxidative function in human permeabilized muscle fibres.
    Walsh B, Tonkonogi M, Sahlin K.
    Pflugers Arch; 2001 Jun 01; 442(3):420-5. PubMed ID: 11484774
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.