These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
209 related items for PubMed ID: 21776467
1. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Lai RH, Miller MJ, Jeffery E. Food Funct; 2010 Nov; 1(2):161-6. PubMed ID: 21776467 [Abstract] [Full Text] [Related]
2. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates. Liu X, Wang Y, Hoeflinger JL, Neme BP, Jeffery EH, Miller MJ. Nutrients; 2017 Mar 10; 9(3):. PubMed ID: 28287418 [Abstract] [Full Text] [Related]
3. The metabolic fate of purified glucoraphanin in F344 rats. Bheemreddy RM, Jeffery EH. J Agric Food Chem; 2007 Apr 18; 55(8):2861-6. PubMed ID: 17367161 [Abstract] [Full Text] [Related]
4. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Matusheski NV, Jeffery EH. J Agric Food Chem; 2001 Dec 18; 49(12):5743-9. PubMed ID: 11743757 [Abstract] [Full Text] [Related]
5. The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT. Mol Nutr Food Res; 2014 Apr 18; 58(4):875-83. PubMed ID: 24170324 [Abstract] [Full Text] [Related]
6. Approaches for enhancing the stability and formation of sulforaphane. Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Food Chem; 2021 May 30; 345():128771. PubMed ID: 33601652 [Abstract] [Full Text] [Related]
7. Enhanced production of sulforaphane by exogenous glucoraphanin hydrolysis catalyzed by myrosinase extracted from Chinese flowering cabbage (Brassica rapa var. parachinensis). Sangkret S, Pongmalai P, Devahastin S, Chiewchan N. Sci Rep; 2019 Jul 08; 9(1):9882. PubMed ID: 31285497 [Abstract] [Full Text] [Related]
8. Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA. Mol Nutr Food Res; 2012 Dec 08; 56(12):1906-16. PubMed ID: 23109475 [Abstract] [Full Text] [Related]
9. The impact of loss of myrosinase on the bioactivity of broccoli products in F344 rats. Zhu N, Soendergaard M, Jeffery EH, Lai RH. J Agric Food Chem; 2010 Feb 10; 58(3):1558-63. PubMed ID: 20085276 [Abstract] [Full Text] [Related]
11. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Ghawi SK, Methven L, Niranjan K. Food Chem; 2013 Jun 01; 138(2-3):1734-41. PubMed ID: 23411305 [Abstract] [Full Text] [Related]
12. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Cramer JM, Jeffery EH. Nutr Cancer; 2011 Jun 01; 63(2):196-201. PubMed ID: 21240766 [Abstract] [Full Text] [Related]
13. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Bricker GV, Riedl KM, Ralston RA, Tober KL, Oberyszyn TM, Schwartz SJ. Mol Nutr Food Res; 2014 Oct 01; 58(10):1991-2000. PubMed ID: 24975513 [Abstract] [Full Text] [Related]
14. Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Wei L, Liu C, Zheng H, Zheng L. Food Chem; 2020 Mar 01; 307():125562. PubMed ID: 31648174 [Abstract] [Full Text] [Related]
15. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae. Mullaney JA, Kelly WJ, McGhie TK, Ansell J, Heyes JA. J Agric Food Chem; 2013 Mar 27; 61(12):3039-46. PubMed ID: 23461529 [Abstract] [Full Text] [Related]
16. Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B. Br J Nutr; 2007 Apr 27; 97(4):644-52. PubMed ID: 17349076 [Abstract] [Full Text] [Related]
17. Bioavailability of Glucoraphanin and Sulforaphane from High-Glucoraphanin Broccoli. Sivapalan T, Melchini A, Saha S, Needs PW, Traka MH, Tapp H, Dainty JR, Mithen RF. Mol Nutr Food Res; 2018 Sep 27; 62(18):e1700911. PubMed ID: 29266773 [Abstract] [Full Text] [Related]
18. Novel concepts of broccoli sulforaphanes and disease: induction of phase II antioxidant and detoxification enzymes by enhanced-glucoraphanin broccoli. James D, Devaraj S, Bellur P, Lakkanna S, Vicini J, Boddupalli S. Nutr Rev; 2012 Nov 27; 70(11):654-65. PubMed ID: 23110644 [Abstract] [Full Text] [Related]
19. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. Zhuang L, Xu K, Zhu Y, Wang F, Xiao J, Guo L. Food Chem; 2021 Jan 01; 334():127520. PubMed ID: 32693332 [Abstract] [Full Text] [Related]
20. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. Vanduchova A, Anzenbacher P, Anzenbacherova E. J Med Food; 2019 Feb 01; 22(2):121-126. PubMed ID: 30372361 [Abstract] [Full Text] [Related] Page: [Next] [New Search]