These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 21777427

  • 1. iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network.
    Imam S, Yilmaz S, Sohmen U, Gorzalski AS, Reed JL, Noguera DR, Donohue TJ.
    BMC Syst Biol; 2011 Jul 21; 5():116. PubMed ID: 21777427
    [Abstract] [Full Text] [Related]

  • 2. Global insights into energetic and metabolic networks in Rhodobacter sphaeroides.
    Imam S, Noguera DR, Donohue TJ.
    BMC Syst Biol; 2013 Sep 13; 7():89. PubMed ID: 24034347
    [Abstract] [Full Text] [Related]

  • 3. Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism.
    Shimizu T, Teramoto H, Inui M.
    Appl Environ Microbiol; 2022 Jun 28; 88(12):e0050722. PubMed ID: 35670584
    [Abstract] [Full Text] [Related]

  • 4. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in Rhodobacter sphaeroides.
    Shimizu T, Teramoto H, Inui M.
    Appl Environ Microbiol; 2019 Jan 15; 85(2):. PubMed ID: 30413472
    [Abstract] [Full Text] [Related]

  • 5. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J, Yoshimune K, Komoriya T, Kohno H.
    J Biosci Bioeng; 2011 Dec 15; 112(6):602-5. PubMed ID: 21903465
    [Abstract] [Full Text] [Related]

  • 6. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria.
    Hädicke O, Grammel H, Klamt S.
    BMC Syst Biol; 2011 Sep 25; 5():150. PubMed ID: 21943387
    [Abstract] [Full Text] [Related]

  • 7. Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering.
    Mougiakos I, Orsi E, Ghiffary MR, Post W, de Maria A, Adiego-Perez B, Kengen SWM, Weusthuis RA, van der Oost J.
    Microb Cell Fact; 2019 Nov 25; 18(1):204. PubMed ID: 31767004
    [Abstract] [Full Text] [Related]

  • 8. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively.
    Shimizu T, Teramoto H, Inui M.
    Appl Microbiol Biotechnol; 2019 Dec 25; 103(23-24):9739-9749. PubMed ID: 31696284
    [Abstract] [Full Text] [Related]

  • 9. Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes.
    Pappas CT, Sram J, Moskvin OV, Ivanov PS, Mackenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S, Gomelsky M.
    J Bacteriol; 2004 Jul 25; 186(14):4748-58. PubMed ID: 15231807
    [Abstract] [Full Text] [Related]

  • 10. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides.
    Paoli GC, Tabita FR.
    Arch Microbiol; 1998 Jul 25; 170(1):8-17. PubMed ID: 9639598
    [Abstract] [Full Text] [Related]

  • 11. Network identification and flux quantification of glucose metabolism in Rhodobacter sphaeroides under photoheterotrophic H(2)-producing conditions.
    Tao Y, Liu D, Yan X, Zhou Z, Lee JK, Yang C.
    J Bacteriol; 2012 Jan 25; 194(2):274-83. PubMed ID: 22056932
    [Abstract] [Full Text] [Related]

  • 12. Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.
    Novak RT, Gritzer RF, Leadbetter ER, Godchaux W.
    Microbiology (Reading); 2004 Jun 25; 150(Pt 6):1881-1891. PubMed ID: 15184574
    [Abstract] [Full Text] [Related]

  • 13. Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity.
    Park JY, Kim BN, Kim YH, Min J.
    J Biotechnol; 2018 Dec 20; 288():9-14. PubMed ID: 30359676
    [Abstract] [Full Text] [Related]

  • 14. Pathways involved in reductant distribution during photobiological H(2) production by Rhodobacter sphaeroides.
    Kontur WS, Ziegelhoffer EC, Spero MA, Imam S, Noguera DR, Donohue TJ.
    Appl Environ Microbiol; 2011 Oct 20; 77(20):7425-9. PubMed ID: 21856820
    [Abstract] [Full Text] [Related]

  • 15. Disruption of poly (3-hydroxyalkanoate) depolymerase gene and overexpression of three poly (3-hydroxybutyrate) biosynthetic genes improve poly (3-hydroxybutyrate) production from nitrogen rich medium by Rhodobacter sphaeroides.
    Kobayashi J, Kondo A.
    Microb Cell Fact; 2019 Feb 26; 18(1):40. PubMed ID: 30808422
    [Abstract] [Full Text] [Related]

  • 16. Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides.
    Imam S, Fitzgerald CM, Cook EM, Donohue TJ, Noguera DR.
    Photosynth Res; 2015 Feb 26; 123(2):167-82. PubMed ID: 25428581
    [Abstract] [Full Text] [Related]

  • 17. Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides.
    Ipekoğlu EM, Göçmen K, Öz MT, Gürgan M, Yücel M.
    J Basic Microbiol; 2017 Mar 26; 57(3):238-244. PubMed ID: 27902845
    [Abstract] [Full Text] [Related]

  • 18. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria.
    McEwan AG.
    Antonie Van Leeuwenhoek; 1994 Mar 26; 66(1-3):151-64. PubMed ID: 7747929
    [Abstract] [Full Text] [Related]

  • 19. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides.
    Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS.
    BMC Genomics; 2014 Aug 28; 15(1):730. PubMed ID: 25164283
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.