These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tyrosinase inhibition constituents from the roots of Morus australis. Zheng ZP, Tan HY, Wang M. Fitoterapia; 2012 Sep; 83(6):1008-13. PubMed ID: 22698714 [Abstract] [Full Text] [Related]
7. [Simultaneous determination of four flavones in root and stem of Cudrania tricuspidata and C. cochinchinensis by HPLC-DAD]. Li B, Wang M, Tan YN, Tong MM, Zhai YJ. Zhongguo Zhong Yao Za Zhi; 2013 Jan; 38(2):167-70. PubMed ID: 23672035 [Abstract] [Full Text] [Related]
8. Dioscin: a synergistic tyrosinase inhibitor from the roots of Smilax china. Liang C, Lim JH, Kim SH, Kim DS. Food Chem; 2012 Sep 15; 134(2):1146-8. PubMed ID: 23107741 [Abstract] [Full Text] [Related]
9. Tyrosinase inhibitors isolated from the roots of Paeonia suffruticosa. Ding HY, Lin HC, Chang TS. J Cosmet Sci; 2009 Sep 15; 60(3):347-52. PubMed ID: 19586602 [Abstract] [Full Text] [Related]
10. Synthesis of novel azo-resveratrol, azo-oxyresveratrol and their derivatives as potent tyrosinase inhibitors. Song YM, Ha YM, Kim JA, Chung KW, Uehara Y, Lee KJ, Chun P, Byun Y, Chung HY, Moon HR. Bioorg Med Chem Lett; 2012 Dec 15; 22(24):7451-5. PubMed ID: 23142612 [Abstract] [Full Text] [Related]
11. Tyrosinase inhibitory constituents from the bark of Peltophorum dasyrachis (yellow batai). Fujiwara M, Yagi N, Miyazawa M. Nat Prod Res; 2011 Sep 15; 25(16):1540-8. PubMed ID: 21391111 [Abstract] [Full Text] [Related]
12. Tyrosinase inhibitory constituents from the stems of Maackia fauriei. Kim JM, Ko RK, Jung DS, Kim SS, Lee NH. Phytother Res; 2010 Jan 15; 24(1):70-5. PubMed ID: 19441007 [Abstract] [Full Text] [Related]
13. An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. Yang Z, Zhang Y, Sun L, Wang Y, Gao X, Cheng Y. Anal Chim Acta; 2012 Mar 16; 719():87-95. PubMed ID: 22340536 [Abstract] [Full Text] [Related]
14. [Chemical constituents of Cudrania cochinchinensis]. Zhou Q, Chen L, Chen QW, Chen HW, Dong JX. Zhong Yao Cai; 2013 Sep 16; 36(9):1444-7. PubMed ID: 24620690 [Abstract] [Full Text] [Related]
15. [Study on the chemical constituents of Cudrania tricuspidata]. Wei-Chao W, Yan-Jun Z, Zheng-Yan L. Zhong Yao Cai; 2010 Jun 16; 33(6):913-5. PubMed ID: 21049614 [Abstract] [Full Text] [Related]
16. New flavonol glycosides from the flowers of Aconitum napellus ssp. tauricum. Fico G, Braca A, Bilia AR, Tomè F, Morelli I. Planta Med; 2001 Apr 16; 67(3):287-90. PubMed ID: 11345707 [Abstract] [Full Text] [Related]
17. A new flavonoid from Cudrania cochinchinensis. Chen L, Zhou Q, Li B, Liu SJ, Dong JX. Nat Prod Res; 2015 Apr 16; 29(13):1217-21. PubMed ID: 25571958 [Abstract] [Full Text] [Related]
18. Enhancement of tyrosinase inhibition of the extract of Veratrum patulum using cellulase. Kim DH, Kim JH, Baek SH, Seo JH, Kho YH, Oh TK, Lee CH. Biotechnol Bioeng; 2004 Sep 30; 87(7):849-54. PubMed ID: 15334411 [Abstract] [Full Text] [Related]
19. Flavonoids, including an unusual flavonoid-Mg2+ salt, from roots of Cudrania cochinchinensis. Zhang P, Feng Z, Wang Y. Phytochemistry; 2005 Dec 30; 66(23):2759-65. PubMed ID: 16274710 [Abstract] [Full Text] [Related]
20. Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Likhitwitayawuid K, Sawasdee K, Kirtikara K. Planta Med; 2002 Sep 30; 68(9):841-3. PubMed ID: 12357401 [Abstract] [Full Text] [Related] Page: [Next] [New Search]