These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
881 related items for PubMed ID: 21787017
1. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations. Weiss VC, Rullich M, Köhler C, Frauenheim T. J Chem Phys; 2011 Jul 21; 135(3):034701. PubMed ID: 21787017 [Abstract] [Full Text] [Related]
2. Temperature dependence of crystal growth of hexagonal ice (I(h)). Rozmanov D, Kusalik PG. Phys Chem Chem Phys; 2011 Sep 14; 13(34):15501-11. PubMed ID: 21792403 [Abstract] [Full Text] [Related]
3. Crystal growth investigations of ice∕water interfaces from molecular dynamics simulations: Profile functions and average properties. Razul MS, Kusalik PG. J Chem Phys; 2011 Jan 07; 134(1):014710. PubMed ID: 21219023 [Abstract] [Full Text] [Related]
4. The effect of salt on the melting of ice: A molecular dynamics simulation study. Kim JS, Yethiraj A. J Chem Phys; 2008 Sep 28; 129(12):124504. PubMed ID: 19045033 [Abstract] [Full Text] [Related]
5. The ice-vapor interface and the melting point of ice I(h) for the polarizable POL3 water model. Muchová E, Gladich I, Picaud S, Hoang PN, Roeselová M. J Phys Chem A; 2011 Jun 16; 115(23):5973-82. PubMed ID: 21452834 [Abstract] [Full Text] [Related]
6. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Kristiansen E, Zachariassen KE. Cryobiology; 2005 Dec 16; 51(3):262-80. PubMed ID: 16140290 [Abstract] [Full Text] [Related]
7. The melting temperature of the most common models of water. Vega C, Sanz E, Abascal JL. J Chem Phys; 2005 Mar 15; 122(11):114507. PubMed ID: 15836229 [Abstract] [Full Text] [Related]
8. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations. Qvist J, Schober H, Halle B. J Chem Phys; 2011 Apr 14; 134(14):144508. PubMed ID: 21495765 [Abstract] [Full Text] [Related]
9. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. García Fernández R, Abascal JL, Vega C. J Chem Phys; 2006 Apr 14; 124(14):144506. PubMed ID: 16626213 [Abstract] [Full Text] [Related]
10. Quantum effects in liquid water and ice: model dependence. Hernández de la Peña L, Kusalik PG. J Chem Phys; 2006 Aug 07; 125(5):054512. PubMed ID: 16942231 [Abstract] [Full Text] [Related]
11. On the time required to freeze water. Espinosa JR, Navarro C, Sanz E, Valeriani C, Vega C. J Chem Phys; 2016 Dec 07; 145(21):211922. PubMed ID: 28799362 [Abstract] [Full Text] [Related]
12. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. Johnston JC, Molinero V. J Am Chem Soc; 2012 Apr 18; 134(15):6650-9. PubMed ID: 22452637 [Abstract] [Full Text] [Related]
13. Ice growth rate: Temperature dependence and effect of heat dissipation. Montero de Hijes P, Espinosa JR, Vega C, Sanz E. J Chem Phys; 2019 Jul 28; 151(4):044509. PubMed ID: 31370558 [Abstract] [Full Text] [Related]
14. Anisotropy in the crystal growth of hexagonal ice, I(h). Rozmanov D, Kusalik PG. J Chem Phys; 2012 Sep 07; 137(9):094702. PubMed ID: 22957581 [Abstract] [Full Text] [Related]
15. Freezing, melting and structure of ice in a hydrophilic nanopore. Moore EB, de la Llave E, Welke K, Scherlis DA, Molinero V. Phys Chem Chem Phys; 2010 Apr 28; 12(16):4124-34. PubMed ID: 20379503 [Abstract] [Full Text] [Related]
16. Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt. Tombari E, Presto S, Salvetti G, Johari GP. J Chem Phys; 2006 Apr 21; 124(15):154507. PubMed ID: 16674242 [Abstract] [Full Text] [Related]
17. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water. Smith RS, Petrik NG, Kimmel GA, Kay BD. Acc Chem Res; 2012 Jan 17; 45(1):33-42. PubMed ID: 21627126 [Abstract] [Full Text] [Related]
18. Molecular dynamics simulations of ice nucleation by electric fields. Yan JY, Patey GN. J Phys Chem A; 2012 Jul 05; 116(26):7057-64. PubMed ID: 22686470 [Abstract] [Full Text] [Related]
19. Temperature dependence of ice critical nucleus size. Pereyra RG, Szleifer I, Carignano MA. J Chem Phys; 2011 Jul 21; 135(3):034508. PubMed ID: 21787014 [Abstract] [Full Text] [Related]
20. Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice. Gladich I, Pfalzgraff W, Maršálek O, Jungwirth P, Roeselová M, Neshyba S. Phys Chem Chem Phys; 2011 Nov 28; 13(44):19960-9. PubMed ID: 21993291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]