These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
325 related items for PubMed ID: 21799737
1. Inferring gene-phenotype associations via global protein complex network propagation. Yang P, Li X, Wu M, Kwoh CK, Ng SK. PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737 [Abstract] [Full Text] [Related]
2. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network. Jiang JQ, Dress AW, Chen M. J Integr Bioinform; 2010 Nov 22; 7(2):. PubMed ID: 21098881 [Abstract] [Full Text] [Related]
3. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y, Liu J, Liu X, Fan X, Hong Y, Wang Y, Huang Y, Xie M. BMC Bioinformatics; 2018 Feb 08; 19(1):47. PubMed ID: 29422030 [Abstract] [Full Text] [Related]
4. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data. Luo J, Liang S. J Biomed Inform; 2015 Feb 08; 53():229-36. PubMed ID: 25460206 [Abstract] [Full Text] [Related]
5. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. Guney E, Oliva B. PLoS One; 2012 Feb 08; 7(9):e43557. PubMed ID: 23028459 [Abstract] [Full Text] [Related]
6. Benchmarking network-based gene prioritization methods for cerebral small vessel disease. Zhang H, Ferguson A, Robertson G, Jiang M, Zhang T, Sudlow C, Smith K, Rannikmae K, Wu H. Brief Bioinform; 2021 Sep 02; 22(5):. PubMed ID: 33634312 [Abstract] [Full Text] [Related]
7. Align human interactome with phenome to identify causative genes and networks underlying disease families. Wu X, Liu Q, Jiang R. Bioinformatics; 2009 Jan 01; 25(1):98-104. PubMed ID: 19010805 [Abstract] [Full Text] [Related]
8. Gene co-expression in the interactome: moving from correlation toward causation via an integrated approach to disease module discovery. Paci P, Fiscon G, Conte F, Wang RS, Farina L, Loscalzo J. NPJ Syst Biol Appl; 2021 Jan 21; 7(1):3. PubMed ID: 33479222 [Abstract] [Full Text] [Related]
11. Constructing an integrated gene similarity network for the identification of disease genes. Tian Z, Guo M, Wang C, Xing L, Wang L, Zhang Y. J Biomed Semantics; 2017 Sep 20; 8(Suppl 1):32. PubMed ID: 29297379 [Abstract] [Full Text] [Related]
12. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. Lin L, Yang T, Fang L, Yang J, Yang F, Zhao J. BMC Syst Biol; 2017 Dec 06; 11(1):121. PubMed ID: 29212543 [Abstract] [Full Text] [Related]
13. Network-based global inference of human disease genes. Wu X, Jiang R, Zhang MQ, Li S. Mol Syst Biol; 2008 Dec 06; 4():189. PubMed ID: 18463613 [Abstract] [Full Text] [Related]
14. NDRC: A Disease-Causing Genes Prioritized Method Based on Network Diffusion and Rank Concordance. Fang M, Hu X, Wang Y, Zhao J, Shen X, He T. IEEE Trans Nanobioscience; 2015 Jul 06; 14(5):521-7. PubMed ID: 26080386 [Abstract] [Full Text] [Related]
15. Network-based Phenome-Genome Association Prediction by Bi-Random Walk. Xie M, Xu Y, Zhang Y, Hwang T, Kuang R. PLoS One; 2015 Jul 06; 10(5):e0125138. PubMed ID: 25933025 [Abstract] [Full Text] [Related]