These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 21813563

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Carbohydrate Metabolism and Signaling in Squash Nectaries and Nectar Throughout Floral Maturation.
    Solhaug EM, Johnson E, Carter CJ.
    Plant Physiol; 2019 Aug; 180(4):1930-1946. PubMed ID: 31213512
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Translocation of heavy metals from soils into floral organs and rewards of Cucurbita pepo: Implications for plant reproductive fitness.
    Xun E, Zhang Y, Zhao J, Guo J.
    Ecotoxicol Environ Saf; 2017 Nov; 145():235-243. PubMed ID: 28738207
    [Abstract] [Full Text] [Related]

  • 6. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo).
    Stoner KA, Eitzer BD.
    PLoS One; 2012 Nov; 7(6):e39114. PubMed ID: 22761727
    [Abstract] [Full Text] [Related]

  • 7. Sex-Dependent Variation of Pumpkin (Cucurbita maxima cv. Big Max) Nectar and Nectaries as Determined by Proteomics and Metabolomics.
    Chatt EC, von Aderkas P, Carter CJ, Smith D, Elliott M, Nikolau BJ.
    Front Plant Sci; 2018 Nov; 9():860. PubMed ID: 30008725
    [Abstract] [Full Text] [Related]

  • 8. Proteomics and post-secretory content adjustment of Nicotiana tabacum nectar.
    Ma XL, Milne RI, Zhou HX, Song YQ, Fang JY, Zha HG.
    Planta; 2019 Nov; 250(5):1703-1715. PubMed ID: 31414205
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Nectar resorption and translocation in Cucurbita pepo L. and Platanthera chlorantha Custer (Rchb.).
    Nepi M, Stpiczyńska M.
    Plant Biol (Stuttg); 2007 Jan; 9(1):93-100. PubMed ID: 16883483
    [Abstract] [Full Text] [Related]

  • 11. Purification and characterization of enzymes exhibiting beta-D-xylosidase activities in stem tissues of Arabidopsis.
    Minic Z, Rihouey C, Do CT, Lerouge P, Jouanin L.
    Plant Physiol; 2004 Jun; 135(2):867-78. PubMed ID: 15181203
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Floral nectar production and nectary structure of a bee-pollinated shrub from Neotropical savanna.
    Guimarães E, Nogueira A, Machado SR.
    Plant Biol (Stuttg); 2016 Jan; 18(1):26-36. PubMed ID: 26194742
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Floral nectary, nectar production dynamics, and floral reproductive isolation among closely related species of Pedicularis.
    Liu YN, Li Y, Yang FS, Wang XQ.
    J Integr Plant Biol; 2016 Feb; 58(2):178-87. PubMed ID: 26172034
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans.
    Zhou J, Bao L, Chang L, Liu Z, You C, Lu H.
    Lett Appl Microbiol; 2012 Feb; 54(2):79-87. PubMed ID: 22085266
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.