These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 21816817
1. Functional role of two interhelical disulfide bonds in human Cox17 protein from a structural perspective. Banci L, Bertini I, Cefaro C, Ciofi-Baffoni S, Gallo A. J Biol Chem; 2011 Sep 30; 286(39):34382-90. PubMed ID: 21816817 [Abstract] [Full Text] [Related]
2. A structural-dynamical characterization of human Cox17. Banci L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P. J Biol Chem; 2008 Mar 21; 283(12):7912-20. PubMed ID: 18093982 [Abstract] [Full Text] [Related]
4. Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding. Arnesano F, Balatri E, Banci L, Bertini I, Winge DR. Structure; 2005 May 21; 13(5):713-22. PubMed ID: 15893662 [Abstract] [Full Text] [Related]
5. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR. J Biol Chem; 2004 Aug 20; 279(34):35334-40. PubMed ID: 15199057 [Abstract] [Full Text] [Related]
6. Yeast cox17 solution structure and Copper(I) binding. Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC. J Biol Chem; 2004 Dec 17; 279(51):53584-92. PubMed ID: 15465825 [Abstract] [Full Text] [Related]
7. Cox17 is functional when tethered to the mitochondrial inner membrane. Maxfield AB, Heaton DN, Winge DR. J Biol Chem; 2004 Feb 13; 279(7):5072-80. PubMed ID: 14615477 [Abstract] [Full Text] [Related]
8. The P174L mutation in human Sco1 severely compromises Cox17-dependent metallation but does not impair copper binding. Cobine PA, Pierrel F, Leary SC, Sasarman F, Horng YC, Shoubridge EA, Winge DR. J Biol Chem; 2006 May 05; 281(18):12270-6. PubMed ID: 16520371 [Abstract] [Full Text] [Related]
9. Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer. Banci L, Bertini I, Ciofi-Baffoni S, Hadjiloi T, Martinelli M, Palumaa P. Proc Natl Acad Sci U S A; 2008 May 13; 105(19):6803-8. PubMed ID: 18458339 [Abstract] [Full Text] [Related]
10. SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. Glerum DM, Shtanko A, Tzagoloff A. J Biol Chem; 1996 Aug 23; 271(34):20531-5. PubMed ID: 8702795 [Abstract] [Full Text] [Related]
11. Oxidative switches in functioning of mammalian copper chaperone Cox17. Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Krebs B, Kazantseva J, Sillard R, Palumaa P. Biochem J; 2007 Nov 15; 408(1):139-48. PubMed ID: 17672825 [Abstract] [Full Text] [Related]
12. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Zhou NE, Kay CM, Hodges RS. Biochemistry; 1993 Mar 30; 32(12):3178-87. PubMed ID: 8457578 [Abstract] [Full Text] [Related]
13. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Mordas A, Tokatlidis K. Acc Chem Res; 2015 Aug 18; 48(8):2191-9. PubMed ID: 26214018 [Abstract] [Full Text] [Related]
14. Stable COX17 Downregulation Leads to Alterations in Mitochondrial Ultrastructure, Decreased Copper Content and Impaired Cytochrome c Oxidase Biogenesis in HEK293 Cells. Vanišová M, Burská D, Křížová J, Daňhelovská T, Dosoudilová Ž, Zeman J, Stibůrek L, Hansíková H. Folia Biol (Praha); 2019 Aug 18; 65(4):181-187. PubMed ID: 31903891 [Abstract] [Full Text] [Related]
15. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Hodges RS, Zhou NE, Kay CM, Semchuk PD. Pept Res; 1990 Aug 18; 3(3):123-37. PubMed ID: 2134057 [Abstract] [Full Text] [Related]
16. COA6 Is Structurally Tuned to Function as a Thiol-Disulfide Oxidoreductase in Copper Delivery to Mitochondrial Cytochrome c Oxidase. Soma S, Morgada MN, Naik MT, Boulet A, Roesler AA, Dziuba N, Ghosh A, Yu Q, Lindahl PA, Ames JB, Leary SC, Vila AJ, Gohil VM. Cell Rep; 2019 Dec 17; 29(12):4114-4126.e5. PubMed ID: 31851937 [Abstract] [Full Text] [Related]
17. Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Kamikubo Y, De Guzman R, Kroon G, Curriden S, Neels JG, Churchill MJ, Dawson P, Ołdziej S, Jagielska A, Scheraga HA, Loskutoff DJ, Dyson HJ. Biochemistry; 2004 Jun 01; 43(21):6519-34. PubMed ID: 15157085 [Abstract] [Full Text] [Related]
18. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase. Morgada MN, Abriata LA, Cefaro C, Gajda K, Banci L, Vila AJ. Proc Natl Acad Sci U S A; 2015 Sep 22; 112(38):11771-6. PubMed ID: 26351686 [Abstract] [Full Text] [Related]
19. Mutational analysis of the mitochondrial copper metallochaperone Cox17. Heaton D, Nittis T, Srinivasan C, Winge DR. J Biol Chem; 2000 Dec 01; 275(48):37582-7. PubMed ID: 10970896 [Abstract] [Full Text] [Related]
20. Conformation of factor VIIa stabilized by a labile disulfide bond (Cys-310-Cys-329) in the protease domain is essential for interaction with tissue factor. Higashi S, Matsumoto N, Iwanaga S. J Biol Chem; 1997 Oct 10; 272(41):25724-30. PubMed ID: 9325298 [Abstract] [Full Text] [Related] Page: [Next] [New Search]