These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
206 related items for PubMed ID: 21820050
21. Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Pohl M, Sakurai H, Stuart RO, Nigam SK. Dev Biol; 2000 Aug 15; 224(2):312-25. PubMed ID: 10926769 [Abstract] [Full Text] [Related]
22. Downregulation of Spry-1, an inhibitor of GDNF/Ret, causes angiotensin II-induced ureteric bud branching. Yosypiv IV, Boh MK, Spera MA, El-Dahr SS. Kidney Int; 2008 Nov 15; 74(10):1287-93. PubMed ID: 18650792 [Abstract] [Full Text] [Related]
23. Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, Nigam SK. Dev Biol; 2011 Aug 01; 356(1):19-27. PubMed ID: 21600196 [Abstract] [Full Text] [Related]
24. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM. Dev Biol; 2004 Dec 15; 276(2):403-15. PubMed ID: 15581874 [Abstract] [Full Text] [Related]
25. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Shakya R, Watanabe T, Costantini F. Dev Cell; 2005 Jan 15; 8(1):65-74. PubMed ID: 15621530 [Abstract] [Full Text] [Related]
26. Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. Pohl M, Sakurai H, Bush KT, Nigam SK. Am J Physiol Renal Physiol; 2000 Nov 15; 279(5):F891-900. PubMed ID: 11053050 [Abstract] [Full Text] [Related]
27. Ureteric bud derivatives express angiotensinogen and AT1 receptors. Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS. Physiol Genomics; 2001 Jun 06; 6(1):29-37. PubMed ID: 11395544 [Abstract] [Full Text] [Related]
28. Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. Song R, Preston G, Ichihara A, Yosypiv IV. PLoS One; 2013 Jun 06; 8(5):e63835. PubMed ID: 23704941 [Abstract] [Full Text] [Related]
29. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching. Hilliard S, Aboudehen K, Yao X, El-Dahr SS. Dev Biol; 2011 May 15; 353(2):354-66. PubMed ID: 21420949 [Abstract] [Full Text] [Related]
30. Deletion of the prorenin receptor in the ureteric bud in mice inhibits Dot1/H3K79 pathway. Song R, Yosypiv IV. Pediatr Res; 2024 Jun 15; 95(7):1754-1757. PubMed ID: 38287105 [Abstract] [Full Text] [Related]
31. Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Yosypiv IV, El-Dahr SS. Pediatr Nephrol; 2005 Sep 15; 20(9):1219-29. PubMed ID: 15942783 [Abstract] [Full Text] [Related]
32. GDNF/Ret signaling and renal branching morphogenesis: From mesenchymal signals to epithelial cell behaviors. Costantini F. Organogenesis; 2010 Sep 15; 6(4):252-62. PubMed ID: 21220964 [Abstract] [Full Text] [Related]
33. Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Stuart RO, Bush KT, Nigam SK. Kidney Int; 2003 Dec 15; 64(6):1997-2008. PubMed ID: 14633122 [Abstract] [Full Text] [Related]
34. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. PLoS Biol; 2016 Feb 15; 14(2):e1002382. PubMed ID: 26894589 [Abstract] [Full Text] [Related]
35. Angiotensin II biphasically regulates cell differentiation in human iPSC-derived kidney organoids. Yanofsky SM, Dugas CM, Katsurada A, Liu J, Saifudeen Z, El-Dahr SS, Satou R. Am J Physiol Renal Physiol; 2021 Nov 01; 321(5):F559-F571. PubMed ID: 34448643 [Abstract] [Full Text] [Related]
36. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, D'Agati V, Gurniak C, Witke W, Costantini F. PLoS Genet; 2010 Oct 28; 6(10):e1001176. PubMed ID: 21060807 [Abstract] [Full Text] [Related]
37. Vegf as an epithelial cell morphogen modulates branching morphogenesis of embryonic kidney by directly acting on the ureteric bud. Marlier A, Schmidt-Ott KM, Gallagher AR, Barasch J, Karihaloo A. Mech Dev; 2009 Oct 28; 126(3-4):91-8. PubMed ID: 19150651 [Abstract] [Full Text] [Related]
38. Development and differentiation of the ureteric bud into the ureter in the absence of a kidney collecting system. Bush KT, Vaughn DA, Li X, Rosenfeld MG, Rose DW, Mendoza SA, Nigam SK. Dev Biol; 2006 Oct 15; 298(2):571-84. PubMed ID: 16934795 [Abstract] [Full Text] [Related]
39. Novel expression and regulation of the renin-angiotensin system in metanephric organ culture. Norwood VF, Garmey M, Wolford J, Carey RM, Gomez RA. Am J Physiol Regul Integr Comp Physiol; 2000 Aug 15; 279(2):R522-30. PubMed ID: 10938241 [Abstract] [Full Text] [Related]
40. Overexpression of Robo2 causes defects in the recruitment of metanephric mesenchymal cells and ureteric bud branching morphogenesis. Ji J, Li Q, Xie Y, Zhang X, Cui S, Shi S, Chen X. Biochem Biophys Res Commun; 2012 May 11; 421(3):494-500. PubMed ID: 22521888 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]