These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 21820088

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14.
    Shahsavarani H, Hasegawa D, Yokota D, Sugiyama M, Kaneko Y, Boonchird C, Harashima S.
    J Biosci Bioeng; 2013 Jan; 115(1):20-3. PubMed ID: 22925900
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.
    Wang FZ, Xie T, Hui M.
    Prikl Biokhim Mikrobiol; 2011 Jan; 47(5):579-83. PubMed ID: 22232900
    [Abstract] [Full Text] [Related]

  • 7. Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance.
    Jansen T, Hoff JW, Jolly N, van Zyl WH.
    Folia Microbiol (Praha); 2018 Mar; 63(2):155-168. PubMed ID: 28887734
    [Abstract] [Full Text] [Related]

  • 8. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y, Park JY, Shiroma R, Tokuyasu K.
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [Abstract] [Full Text] [Related]

  • 9. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes.
    Pereira FB, Guimarães PM, Teixeira JA, Domingues L.
    Biotechnol Lett; 2010 Nov; 32(11):1655-61. PubMed ID: 20574836
    [Abstract] [Full Text] [Related]

  • 10. Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol.
    Choi GW, Kang HW, Moon SK.
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):261-9. PubMed ID: 19319524
    [Abstract] [Full Text] [Related]

  • 11. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [Abstract] [Full Text] [Related]

  • 12. Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol.
    Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K, Nakamura T.
    Bioresour Technol; 2010 Dec; 101(24):9710-4. PubMed ID: 20705456
    [Abstract] [Full Text] [Related]

  • 13. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].
    Liu X, He X, Lu Y, Zhang B.
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1049-56. PubMed ID: 22016989
    [Abstract] [Full Text] [Related]

  • 14. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W.
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [Abstract] [Full Text] [Related]

  • 15. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms.
    Zhang J, Lynd LR.
    Biotechnol Bioeng; 2010 Oct 01; 107(2):235-44. PubMed ID: 20506488
    [Abstract] [Full Text] [Related]

  • 16. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase.
    Shahsavarani H, Sugiyama M, Kaneko Y, Chuenchit B, Harashima S.
    Biotechnol Adv; 2012 Oct 01; 30(6):1289-300. PubMed ID: 21930195
    [Abstract] [Full Text] [Related]

  • 17. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L.
    Appl Biochem Biotechnol; 2010 Feb 01; 160(4):1084-93. PubMed ID: 19214789
    [Abstract] [Full Text] [Related]

  • 18. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry.
    Della-Bianca BE, Gombert AK.
    Antonie Van Leeuwenhoek; 2013 Dec 01; 104(6):1083-95. PubMed ID: 24062068
    [Abstract] [Full Text] [Related]

  • 19. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A.
    Appl Microbiol Biotechnol; 2009 Apr 01; 82(6):1037-47. PubMed ID: 19125247
    [Abstract] [Full Text] [Related]

  • 20. Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae.
    Ahn DJ, Kim SK, Yun HS.
    Bioprocess Biosyst Eng; 2012 Jan 01; 35(1-2):35-41. PubMed ID: 21909939
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.