These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 21820088

  • 41. Bioprospecting of thermo- and osmo-tolerant fungi from mango pulp-peel compost for bioethanol production.
    Dandi ND, Dandi BN, Chaudhari AB.
    Antonie Van Leeuwenhoek; 2013 Apr; 103(4):723-36. PubMed ID: 23180376
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae.
    Yu Z, Zhang H.
    Bioresour Technol; 2004 Jun; 93(2):199-204. PubMed ID: 15051082
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse.
    Ma K, Wakisaka M, Sakai K, Shirai Y.
    Bioresour Technol; 2009 Apr; 100(7):2289-92. PubMed ID: 19097887
    [Abstract] [Full Text] [Related]

  • 46. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK, Sedlak M, Khan A, Ho NW.
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene.
    Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR.
    Biotechnol Lett; 2011 Feb; 33(2):277-84. PubMed ID: 20953665
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Engineering high-gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae.
    Caspeta L, Coronel J, Montes de Oca A, Abarca E, González L, Martínez A.
    Biotechnol Bioeng; 2019 Oct; 116(10):2587-2597. PubMed ID: 31282999
    [Abstract] [Full Text] [Related]

  • 53. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae.
    Olofsson K, Rudolf A, Lidén G.
    J Biotechnol; 2008 Mar 20; 134(1-2):112-20. PubMed ID: 18294716
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS.
    Biotechnol Bioeng; 2011 Mar 20; 108(3):621-31. PubMed ID: 21246509
    [Abstract] [Full Text] [Related]

  • 60. Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations.
    Xiong M, Chen G, Barford J.
    Bioresour Technol; 2011 Oct 20; 102(19):9206-15. PubMed ID: 21831633
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.