These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 21820283
1. Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate. Kitano H, Kondo T, Kamada T, Iwanaga S, Nakamura M, Ohno K. Colloids Surf B Biointerfaces; 2011 Nov 01; 88(1):455-62. PubMed ID: 21820283 [Abstract] [Full Text] [Related]
3. Anti-biofouling properties of a telomer brush with pendent glucosylurea groups. Kitano H, Hayashi A, Takakura H, Suzuki H, Kanayama N, Saruwatari Y. Langmuir; 2009 Aug 18; 25(16):9361-8. PubMed ID: 19518093 [Abstract] [Full Text] [Related]
4. Image printing on the surface of anti-biofouling zwitterionic polymer brushes by ion beam irradiation. Kitano H, Suzuki H, Kondo T, Sasaki K, Iwanaga S, Nakamura M, Ohno K, Saruwatari Y. Macromol Biosci; 2011 Apr 08; 11(4):557-64. PubMed ID: 21243650 [Abstract] [Full Text] [Related]
6. Patterning of photocleavable zwitterionic polymer brush fabricated on silicon wafer. Kamada T, Yamazawa Y, Nakaji-Hirabayashi T, Kitano H, Usui Y, Hiroi Y, Kishioka T. Colloids Surf B Biointerfaces; 2014 Nov 01; 123():878-86. PubMed ID: 25466462 [Abstract] [Full Text] [Related]
7. A novel approach for UV-patterning with binary polymer brushes. Li L, Nakaji-Hirabayashi T, Kitano H, Ohno K, Saruwatari Y, Matsuoka K. Colloids Surf B Biointerfaces; 2018 Jan 01; 161():42-50. PubMed ID: 29040833 [Abstract] [Full Text] [Related]
8. Non-biofouling property of well-defined concentrated polymer brushes. Yoshikawa C, Qiu J, Huang CF, Shimizu Y, Suzuki J, van den Bosch E. Colloids Surf B Biointerfaces; 2015 Mar 01; 127():213-20. PubMed ID: 25679494 [Abstract] [Full Text] [Related]
10. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. Zhao YH, Zhu XY, Wee KH, Bai R. J Phys Chem B; 2010 Feb 25; 114(7):2422-9. PubMed ID: 20121056 [Abstract] [Full Text] [Related]
11. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization. Kitano H, Kondo T, Suzuki H, Ohno K. J Colloid Interface Sci; 2010 May 15; 345(2):325-31. PubMed ID: 20206360 [Abstract] [Full Text] [Related]
12. Carboxymethylbetaine copolymer layer covalently fixed to a glass substrate. Suzuki H, Li L, Nakaji-Hirabayashi T, Kitano H, Ohno K, Matsuoka K, Saruwatari Y. Colloids Surf B Biointerfaces; 2012 Jun 01; 94():107-13. PubMed ID: 22348985 [Abstract] [Full Text] [Related]
13. Binding of β-amyloid to sulfated sugar residues in a polymer brush. Kitano H, Saito D, Kamada T, Gemmei-Ide M. Colloids Surf B Biointerfaces; 2012 May 01; 93():219-25. PubMed ID: 22305636 [Abstract] [Full Text] [Related]
14. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Chang Y, Shu SH, Shih YJ, Chu CW, Ruaan RC, Chen WY. Langmuir; 2010 Mar 02; 26(5):3522-30. PubMed ID: 19947616 [Abstract] [Full Text] [Related]
15. High capacity, charge-selective protein uptake by polyelectrolyte brushes. Kusumo A, Bombalski L, Lin Q, Matyjaszewski K, Schneider JW, Tilton RD. Langmuir; 2007 Apr 10; 23(8):4448-54. PubMed ID: 17358090 [Abstract] [Full Text] [Related]
16. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R, Klok HA. Langmuir; 2010 Dec 07; 26(23):18219-30. PubMed ID: 21062007 [Abstract] [Full Text] [Related]
17. Concentrated polymer brush-modified silica particle coating confers biofouling-resistance on modified materials. Yoshikawa C, Qiu J, Shimizu Y, Huang CF, Gelling OJ, van den Bosch E. Mater Sci Eng C Mater Biol Appl; 2017 Jan 01; 70(Pt 1):272-277. PubMed ID: 27770891 [Abstract] [Full Text] [Related]
18. Development of a novel antifouling platform for biosensing probe immobilization from methacryloyloxyethyl phosphorylcholine-containing copolymer brushes. Akkahat P, Kiatkamjornwong S, Yusa S, Hoven VP, Iwasaki Y. Langmuir; 2012 Apr 03; 28(13):5872-81. PubMed ID: 22364521 [Abstract] [Full Text] [Related]
19. Dual functional, polymeric self-assembled monolayers as a facile platform for construction of patterns of biomolecules. Park S, Lee KB, Choi IS, Langer R, Jon S. Langmuir; 2007 Oct 23; 23(22):10902-5. PubMed ID: 17900199 [Abstract] [Full Text] [Related]
20. Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells. Chernyy S, Jensen BE, Shimizu K, Ceccato M, Pedersen SU, Zelikin AN, Daasbjerg K, Iruthayaraj J. J Colloid Interface Sci; 2013 Aug 15; 404():207-14. PubMed ID: 23711662 [Abstract] [Full Text] [Related] Page: [Next] [New Search]