These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 21827767
1. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B. J Mol Biol; 2011 Sep 23; 412(3):466-80. PubMed ID: 21827767 [Abstract] [Full Text] [Related]
3. The crystal structure of a hyperthermoactive exopolygalacturonase from Thermotoga maritima reveals a unique tetramer. Pijning T, van Pouderoyen G, Kluskens L, van der Oost J, Dijkstra BW. FEBS Lett; 2009 Nov 19; 583(22):3665-70. PubMed ID: 19854184 [Abstract] [Full Text] [Related]
4. Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Comfort DA, Bobrov KS, Ivanen DR, Shabalin KA, Harris JM, Kulminskaya AA, Brumer H, Kelly RM. Biochemistry; 2007 Mar 20; 46(11):3319-30. PubMed ID: 17323919 [Abstract] [Full Text] [Related]
5. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. Nagem RA, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN, Polikarpov I. J Mol Biol; 2004 Nov 19; 344(2):471-80. PubMed ID: 15522299 [Abstract] [Full Text] [Related]
6. The crystal structure of Thermotoga maritima maltosyltransferase and its implications for the molecular basis of the novel transfer specificity. Roujeinikova A, Raasch C, Burke J, Baker PJ, Liebl W, Rice DW. J Mol Biol; 2001 Sep 07; 312(1):119-31. PubMed ID: 11545590 [Abstract] [Full Text] [Related]
7. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus. Solomon HV, Tabachnikov O, Lansky S, Salama R, Feinberg H, Shoham Y, Shoham G. Acta Crystallogr D Biol Crystallogr; 2015 Dec 01; 71(Pt 12):2433-48. PubMed ID: 26627651 [Abstract] [Full Text] [Related]
9. Crystal Structure of α-Galactosidase from Thermus thermophilus: Insight into Hexamer Assembly and Substrate Specificity. Chen SC, Wu SP, Chang YY, Hwang TS, Lee TH, Hsu CH. J Agric Food Chem; 2020 Jun 03; 68(22):6161-6169. PubMed ID: 32390413 [Abstract] [Full Text] [Related]
10. Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation. Nakai H, Baumann MJ, Petersen BO, Westphal Y, Hachem MA, Dilokpimol A, Duus JØ, Schols HA, Svensson B. FEBS J; 2010 Sep 03; 277(17):3538-51. PubMed ID: 20681989 [Abstract] [Full Text] [Related]
11. The tetramer structure of the glycoside hydrolase family 27 alpha-galactosidase I from Umbelopsis vinacea. Fujimoto Z, Kaneko S, Kim WD, Park GG, Momma M, Kobayashi H. Biosci Biotechnol Biochem; 2009 Oct 03; 73(10):2360-4. PubMed ID: 19809163 [Abstract] [Full Text] [Related]
12. Crystal structure of full length topoisomerase I from Thermotoga maritima. Hansen G, Harrenga A, Wieland B, Schomburg D, Reinemer P. J Mol Biol; 2006 May 19; 358(5):1328-40. PubMed ID: 16600296 [Abstract] [Full Text] [Related]
13. Catalytic mechanism of retaining alpha-galactosidase belonging to glycoside hydrolase family 97. Okuyama M, Kitamura M, Hondoh H, Kang MS, Mori H, Kimura A, Tanaka I, Yao M. J Mol Biol; 2009 Oct 09; 392(5):1232-41. PubMed ID: 19646996 [Abstract] [Full Text] [Related]
14. Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. Yoshida E, Hidaka M, Fushinobu S, Koyanagi T, Minami H, Tamaki H, Kitaoka M, Katayama T, Kumagai H. Biochem J; 2010 Oct 01; 431(1):39-49. PubMed ID: 20662765 [Abstract] [Full Text] [Related]
15. Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. Ernst HA, Lo Leggio L, Willemoës M, Leonard G, Blum P, Larsen S. J Mol Biol; 2006 May 12; 358(4):1106-24. PubMed ID: 16580018 [Abstract] [Full Text] [Related]
16. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JC, Lo Leggio L, Svensson B, Abou Hachem M. J Bacteriol; 2012 Aug 12; 194(16):4249-59. PubMed ID: 22685275 [Abstract] [Full Text] [Related]
17. Crystal structure of rice alpha-galactosidase complexed with D-galactose. Fujimoto Z, Kaneko S, Momma M, Kobayashi H, Mizuno H. J Biol Chem; 2003 May 30; 278(22):20313-8. PubMed ID: 12657636 [Abstract] [Full Text] [Related]
18. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution. Charron C, Talfournier F, Isupov MN, Littlechild JA, Branlant G, Vitoux B, Aubry A. J Mol Biol; 2000 Mar 24; 297(2):481-500. PubMed ID: 10715215 [Abstract] [Full Text] [Related]
19. Crystal structure of glycoside hydrolase family 78 alpha-L-Rhamnosidase from Bacillus sp. GL1. Cui Z, Maruyama Y, Mikami B, Hashimoto W, Murata K. J Mol Biol; 2007 Nov 23; 374(2):384-98. PubMed ID: 17936784 [Abstract] [Full Text] [Related]
20. A novel alpha-D-galactosynthase from Thermotoga maritima converts beta-D-galactopyranosyl azide to alpha-galacto-oligosaccharides. Cobucci-Ponzano B, Zorzetti C, Strazzulli A, Carillo S, Bedini E, Corsaro MM, Comfort DA, Kelly RM, Rossi M, Moracci M. Glycobiology; 2011 Apr 23; 21(4):448-56. PubMed ID: 21084405 [Abstract] [Full Text] [Related] Page: [Next] [New Search]