These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


268 related items for PubMed ID: 21829351

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.
    Kravchuk Z, Vicedo B, Flors V, Camañes G, González-Bosch C, García-Agustín P.
    J Plant Physiol; 2011 Mar 01; 168(4):359-66. PubMed ID: 20950893
    [Abstract] [Full Text] [Related]

  • 5. RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.
    Ono E, Mise K, Takano Y.
    Sci Rep; 2020 Aug 14; 10(1):13798. PubMed ID: 32796867
    [Abstract] [Full Text] [Related]

  • 6. Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis.
    Tang D, Simonich MT, Innes RW.
    Plant Physiol; 2007 Jun 14; 144(2):1093-103. PubMed ID: 17434992
    [Abstract] [Full Text] [Related]

  • 7. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection.
    Chassot C, Buchala A, Schoonbeek HJ, Métraux JP, Lamotte O.
    Plant J; 2008 Aug 14; 55(4):555-67. PubMed ID: 18452590
    [Abstract] [Full Text] [Related]

  • 8. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen.
    Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L'Haridon F.
    New Phytol; 2016 May 14; 210(3):1033-43. PubMed ID: 26725246
    [Abstract] [Full Text] [Related]

  • 9. Production of reactive oxygen species and wound-induced resistance in Arabidopsis thaliana against Botrytis cinerea are preceded and depend on a burst of calcium.
    Beneloujaephajri E, Costa A, L'Haridon F, Métraux JP, Binda M.
    BMC Plant Biol; 2013 Oct 17; 13():160. PubMed ID: 24134148
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis.
    Janse van Rensburg HC, Limami AM, Van den Ende W.
    Biomolecules; 2021 Feb 05; 11(2):. PubMed ID: 33562549
    [Abstract] [Full Text] [Related]

  • 12. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA.
    Li X, Yang R, Chen H.
    PLoS One; 2018 Feb 05; 13(3):e0193458. PubMed ID: 29513733
    [Abstract] [Full Text] [Related]

  • 13. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX71.
    Lorrai R, Francocci F, Gully K, Martens HJ, De Lorenzo G, Nawrath C, Ferrari S.
    Front Plant Sci; 2021 Feb 05; 12():696955. PubMed ID: 34484262
    [Abstract] [Full Text] [Related]

  • 14. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis.
    Yang Y, Zhang H, Li G, Li W, Wang X, Song F.
    Plant Biotechnol J; 2009 Oct 05; 7(8):763-77. PubMed ID: 19754836
    [Abstract] [Full Text] [Related]

  • 15. Arabidopsis thaliana Cuticle Composition Contributes to Differential Defense Response to Botrytis cinerea.
    Aragón W, Formey D, Aviles-Baltazar NY, Torres M, Serrano M.
    Front Plant Sci; 2021 Oct 05; 12():738949. PubMed ID: 34804086
    [Abstract] [Full Text] [Related]

  • 16. Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance.
    Benikhlef L, L'Haridon F, Abou-Mansour E, Serrano M, Binda M, Costa A, Lehmann S, Métraux JP.
    BMC Plant Biol; 2013 Sep 13; 13():133. PubMed ID: 24033927
    [Abstract] [Full Text] [Related]

  • 17. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity.
    Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE.
    Plant Cell Environ; 2017 Oct 13; 40(10):2189-2206. PubMed ID: 28708934
    [Abstract] [Full Text] [Related]

  • 18. Differential Function of Endogenous and Exogenous Abscisic Acid during Bacterial Pattern-Induced Production of Reactive Oxygen Species in Arabidopsis.
    Tan L, Liu Q, Song Y, Zhou G, Luan L, Weng Q, He C.
    Int J Mol Sci; 2019 May 23; 20(10):. PubMed ID: 31126160
    [Abstract] [Full Text] [Related]

  • 19. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens.
    Lai Z, Wang F, Zheng Z, Fan B, Chen Z.
    Plant J; 2011 Jun 23; 66(6):953-68. PubMed ID: 21395886
    [Abstract] [Full Text] [Related]

  • 20. BcIEB1, a Botrytis cinerea secreted protein, elicits a defense response in plants.
    Frías M, González M, González C, Brito N.
    Plant Sci; 2016 Sep 23; 250():115-124. PubMed ID: 27457989
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.