These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. EDL and soleus muscles of the C57BL6J/dy2j laminin-alpha 2-deficient dystrophic mouse are not vulnerable to eccentric contractions. Head SI, Bakker AJ, Liangas G. Exp Physiol; 2004 Sep; 89(5):531-9. PubMed ID: 15184359 [Abstract] [Full Text] [Related]
5. Electron microscopic and autoradiographic characterization of hindlimb muscle regeneration in the mdx mouse. Anderson JE, Ovalle WK, Bressler BH. Anat Rec; 1987 Nov; 219(3):243-57. PubMed ID: 3425943 [Abstract] [Full Text] [Related]
6. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice. Divet A, Huchet-Cadiou C. Pflugers Arch; 2002 Aug; 444(5):634-43. PubMed ID: 12194017 [Abstract] [Full Text] [Related]
7. Passive mechanical properties of maturing extensor digitorum longus are not affected by lack of dystrophin. Wolff AV, Niday AK, Voelker KA, Call JA, Evans NP, Granata KP, Grange RW. Muscle Nerve; 2006 Sep; 34(3):304-12. PubMed ID: 16770793 [Abstract] [Full Text] [Related]
8. Effect of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, on skeletal muscles from normal and mdx mice. Divet A, Lompré AM, Huchet-Cadiou C. Acta Physiol Scand; 2005 Jul; 184(3):173-86. PubMed ID: 15954985 [Abstract] [Full Text] [Related]
9. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles. Earnshaw JC, Kyprianou P, Krishan K, Dhoot GK. Histochem Cell Biol; 2002 Jul; 118(1):19-27. PubMed ID: 12122443 [Abstract] [Full Text] [Related]
10. Contractility of mdx skeletal muscle after denervation and devascularization. Mechalchuk CL, Bressler BH. Muscle Nerve; 1992 Mar; 15(3):310-7. PubMed ID: 1557078 [Abstract] [Full Text] [Related]
14. Power output of fast and slow skeletal muscles of mdx (dystrophic) and control mice after clenbuterol treatment. Lynch GS, Hinkle RT, Faulkner JA. Exp Physiol; 2000 May; 85(3):295-9. PubMed ID: 10825417 [Abstract] [Full Text] [Related]
15. Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse. Pastoret C, Sebille A. Muscle Nerve; 1995 Oct; 18(10):1147-54. PubMed ID: 7659109 [Abstract] [Full Text] [Related]
16. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle. Yuasa K, Nakamura A, Hijikata T, Takeda S. BMC Musculoskelet Disord; 2008 Jan 09; 9():1. PubMed ID: 18182116 [Abstract] [Full Text] [Related]
17. Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, Squadrito F, Vita G. Exp Neurol; 2006 Mar 09; 198(1):234-41. PubMed ID: 16410003 [Abstract] [Full Text] [Related]
19. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice. Auda-Boucher G, Rouaud T, Lafoux A, Levitsky D, Huchet-Cadiou C, Feron M, Guevel L, Talon S, Fontaine-Pérus J, Gardahaut MF. Exp Cell Res; 2007 Mar 10; 313(5):997-1007. PubMed ID: 17275812 [Abstract] [Full Text] [Related]
20. Long-term clenbuterol administration alters the isometric contractile properties of skeletal muscle from normal and dystrophin-deficient mdx mice. Hayes A, Williams DA. Clin Exp Pharmacol Physiol; 1994 Oct 10; 21(10):757-65. PubMed ID: 7867226 [Abstract] [Full Text] [Related] Page: [Next] [New Search]