These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 21830954
41. Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Billard A, Fillinger S, Leroux P, Lachaise H, Beffa R, Debieu D. Pest Manag Sci; 2012 May; 68(5):684-91. PubMed ID: 22045588 [Abstract] [Full Text] [Related]
42. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Saito S, Suzuki S, Takayanagi T. Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204 [Abstract] [Full Text] [Related]
43. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum. La Guerche S, Chamont S, Blancard D, Dubourdieu D, Darriet P. Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689 [Abstract] [Full Text] [Related]
44. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Kokkelink L, Minz A, Al-Masri M, Giesbert S, Barakat R, Sharon A, Tudzynski P. Fungal Genet Biol; 2011 Nov; 48(11):1012-9. PubMed ID: 21839848 [Abstract] [Full Text] [Related]
45. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. Gao P, Qin J, Li D, Zhou S. PLoS One; 2018 Nov; 13(1):e0190932. PubMed ID: 29320571 [Abstract] [Full Text] [Related]
46. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P. Mol Plant Microbe Interact; 2008 Jun; 21(6):808-19. PubMed ID: 18624644 [Abstract] [Full Text] [Related]
47. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble. Fournier E, Giraud T. J Evol Biol; 2008 Jan; 21(1):122-132. PubMed ID: 18028352 [Abstract] [Full Text] [Related]
48. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. Silva-Moreno E, Brito-Echeverría J, López M, Ríos J, Balic I, Campos-Vargas R, Polanco R. World J Microbiol Biotechnol; 2016 May; 32(5):74. PubMed ID: 27038944 [Abstract] [Full Text] [Related]
49. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Qin G, Zong Y, Chen Q, Hua D, Tian S. Int J Food Microbiol; 2010 Mar 31; 138(1-2):145-50. PubMed ID: 20060611 [Abstract] [Full Text] [Related]
50. Botrytis euroamericana, a new species from peony and grape in North America and Europe. Garfinkel AR, Lorenzini M, Zapparoli G, Chastagner GA. Mycologia; 2017 Mar 31; 109(3):495-507. PubMed ID: 28849988 [Abstract] [Full Text] [Related]
51. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Yin YN, Kim YK, Xiao CL. Phytopathology; 2012 Mar 31; 102(3):315-22. PubMed ID: 22085296 [Abstract] [Full Text] [Related]
52. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. Kim YK, Xiao CL. Phytopathology; 2011 Nov 31; 101(11):1385-91. PubMed ID: 21692646 [Abstract] [Full Text] [Related]
53. Resistance of Botrytis cinerea to fungicides in Italian vineyards. Bertetti D, Garibaldi A, Gullino ML. Commun Agric Appl Biol Sci; 2008 Nov 31; 73(2):273-82. PubMed ID: 19226764 [Abstract] [Full Text] [Related]
54. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C, He Y, Zhu P, Chen L, Wang Y, Ni B, Xu L. Mol Plant Microbe Interact; 2015 Oct 31; 28(10):1091-101. PubMed ID: 26035129 [Abstract] [Full Text] [Related]
55. Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores. Fernández-González M, Rodríguez-Rajo FJ, Jato V, Aira MJ, Ribeiro H, Oliveira M, Abreu I. Ann Agric Environ Med; 2012 Oct 31; 19(2):255-62. PubMed ID: 22742797 [Abstract] [Full Text] [Related]
56. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Adrian M, Jeandet P. Fitoterapia; 2012 Dec 31; 83(8):1345-50. PubMed ID: 22516542 [Abstract] [Full Text] [Related]
57. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X, Glawe DA, Kramer E, Weller D, Okubara PA. Phytopathology; 2018 Jun 31; 108(6):691-701. PubMed ID: 29334476 [Abstract] [Full Text] [Related]
58. Genetic Diversity of Botrytis cinerea Revealed by Multilocus Sequencing, and Identification of B. cinerea Populations Showing Genetic Isolation and Distinct Host Adaptation. Plesken C, Pattar P, Reiss B, Noor ZN, Zhang L, Klug K, Huettel B, Hahn M. Front Plant Sci; 2021 Jun 31; 12():663027. PubMed ID: 34025700 [Abstract] [Full Text] [Related]
59. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. O'Gorman DT, Sholberg PL, Stokes SC, Ginns J. Mycologia; 2008 Jun 31; 100(2):227-35. PubMed ID: 18592897 [Abstract] [Full Text] [Related]
60. Prevalence of Botrytis Cryptic Species in Strawberry Nursery Transplants and Strawberry and Blueberry Commercial Fields in the Eastern United States. Amiri A, Zuniga AI, Peres NA. Plant Dis; 2018 Feb 31; 102(2):398-404. PubMed ID: 30673521 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]