These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. Saleh AA, Watanabe S, Annaluru N, Kodaki T, Makino K. Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926 [Abstract] [Full Text] [Related]
3. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [Abstract] [Full Text] [Related]
4. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B. Microb Cell Fact; 2010 Mar 10; 9():16. PubMed ID: 20219100 [Abstract] [Full Text] [Related]
5. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S. Appl Microbiol Biotechnol; 2008 Nov 10; 81(2):243-55. PubMed ID: 18751695 [Abstract] [Full Text] [Related]
7. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM, Saimura M, Kodaki T. J Biotechnol; 2013 Jun 10; 165(3-4):153-6. PubMed ID: 23578809 [Abstract] [Full Text] [Related]
9. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Watanabe S, Pack SP, Saleh AA, Annaluru N, Kodaki T, Makino K. Biosci Biotechnol Biochem; 2007 May 10; 71(5):1365-9. PubMed ID: 17485825 [Abstract] [Full Text] [Related]
10. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076 [Abstract] [Full Text] [Related]
14. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Appl Microbiol Biotechnol; 2009 Sep 15; 84(4):751-61. PubMed ID: 19506862 [Abstract] [Full Text] [Related]
15. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. J Biotechnol; 2012 Apr 30; 158(4):192-202. PubMed ID: 21903144 [Abstract] [Full Text] [Related]
19. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains. Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A. Appl Microbiol Biotechnol; 2012 Jun 30; 94(6):1585-92. PubMed ID: 22406859 [Abstract] [Full Text] [Related]
20. Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Matsushika A, Sawayama S. Appl Biochem Biotechnol; 2010 Nov 30; 162(7):1952-60. PubMed ID: 20432070 [Abstract] [Full Text] [Related] Page: [Next] [New Search]