These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 21840980

  • 1. An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores.
    Markel E, Maciak C, Butcher BG, Myers CR, Stodghill P, Bao Z, Cartinhour S, Swingle B.
    J Bacteriol; 2011 Oct; 193(20):5775-83. PubMed ID: 21840980
    [Abstract] [Full Text] [Related]

  • 2. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000.
    Markel E, Stodghill P, Bao Z, Myers CR, Swingle B.
    J Bacteriol; 2016 Sep 01; 198(17):2330-44. PubMed ID: 27325679
    [Abstract] [Full Text] [Related]

  • 3. Ca2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000.
    Fishman MR, Zhang J, Bronstein PA, Stodghill P, Filiatrault MJ.
    J Bacteriol; 2018 Mar 01; 200(5):. PubMed ID: 29263098
    [Abstract] [Full Text] [Related]

  • 4. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions.
    Lam HN, Chakravarthy S, Wei HL, BuiNguyen H, Stodghill PV, Collmer A, Swingle BM, Cartinhour SW.
    PLoS One; 2014 Mar 01; 9(8):e106115. PubMed ID: 25170934
    [Abstract] [Full Text] [Related]

  • 5. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response.
    Butcher BG, Bao Z, Wilson J, Stodghill P, Swingle B, Filiatrault M, Schneider D, Cartinhour S.
    PLoS One; 2017 Mar 01; 12(7):e0180340. PubMed ID: 28700608
    [Abstract] [Full Text] [Related]

  • 6. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000.
    D'Amico K, Filiatrault MJ.
    FEMS Microbiol Lett; 2017 Apr 01; 364(8):. PubMed ID: 28073812
    [Abstract] [Full Text] [Related]

  • 7. Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000.
    Butcher BG, Bronstein PA, Myers CR, Stodghill PV, Bolton JJ, Markel EJ, Filiatrault MJ, Swingle B, Gaballa A, Helmann JD, Schneider DJ, Cartinhour SW.
    J Bacteriol; 2011 Sep 01; 193(18):4598-611. PubMed ID: 21784947
    [Abstract] [Full Text] [Related]

  • 8. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000.
    Sreedharan A, Penaloza-Vazquez A, Kunkel BN, Bender CL.
    Mol Plant Microbe Interact; 2006 Jul 01; 19(7):768-79. PubMed ID: 16838789
    [Abstract] [Full Text] [Related]

  • 9. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants.
    Castillo-Lizardo MG, Aragón IM, Carvajal V, Matas IM, Pérez-Bueno ML, Gallegos MT, Barón M, Ramos C.
    BMC Microbiol; 2015 Aug 19; 15():165. PubMed ID: 26285820
    [Abstract] [Full Text] [Related]

  • 10. Regulons of three Pseudomonas syringae pv. tomato DC3000 iron starvation sigma factors.
    Markel E, Butcher BG, Myers CR, Stodghill P, Cartinhour S, Swingle B.
    Appl Environ Microbiol; 2013 Jan 19; 79(2):725-7. PubMed ID: 23124242
    [Abstract] [Full Text] [Related]

  • 11. The Pseudomonas syringae pv. tomato DC3000 PSPTO_0820 multidrug transporter is involved in resistance to plant antimicrobials and bacterial survival during tomato plant infection.
    Santamaría-Hernando S, Senovilla M, González-Mula A, Martínez-García PM, Nebreda S, Rodríguez-Palenzuela P, López-Solanilla E, Rodríguez-Herva JJ.
    PLoS One; 2019 Jan 19; 14(6):e0218815. PubMed ID: 31237890
    [Abstract] [Full Text] [Related]

  • 12. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis.
    Jones AM, Wildermuth MC.
    J Bacteriol; 2011 Jun 19; 193(11):2767-75. PubMed ID: 21441525
    [Abstract] [Full Text] [Related]

  • 13. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves.
    Santamaría-Hernando S, Rodríguez-Herva JJ, Martínez-García PM, Río-Álvarez I, González-Melendi P, Zamorano J, Tapia C, Rodríguez-Palenzuela P, López-Solanilla E.
    Environ Microbiol; 2018 Dec 19; 20(12):4261-4280. PubMed ID: 30058114
    [Abstract] [Full Text] [Related]

  • 14. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads.
    Swingle B, Thete D, Moll M, Myers CR, Schneider DJ, Cartinhour S.
    Mol Microbiol; 2008 May 19; 68(4):871-89. PubMed ID: 18363796
    [Abstract] [Full Text] [Related]

  • 15. RNA-seq analysis reveals that an ECF σ factor, AcsS, regulates achromobactin biosynthesis in Pseudomonas syringae pv. syringae B728a.
    Greenwald JW, Greenwald CJ, Philmus BJ, Begley TP, Gross DC.
    PLoS One; 2012 May 19; 7(4):e34804. PubMed ID: 22529937
    [Abstract] [Full Text] [Related]

  • 16. PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000.
    Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK.
    Appl Environ Microbiol; 2007 Jun 19; 73(11):3684-94. PubMed ID: 17400767
    [Abstract] [Full Text] [Related]

  • 17. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection.
    Santamaría-Hernando S, Cerna-Vargas JP, Martínez-García PM, de Francisco-de Polanco S, Nebreda S, Rodríguez-Palenzuela P, Rodríguez-Herva JJ, López-Solanilla E.
    Mol Plant Pathol; 2020 Dec 19; 21(12):1606-1619. PubMed ID: 33029921
    [Abstract] [Full Text] [Related]

  • 18. Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants.
    Jones AM, Lindow SE, Wildermuth MC.
    J Bacteriol; 2007 Oct 19; 189(19):6773-86. PubMed ID: 17660289
    [Abstract] [Full Text] [Related]

  • 19. A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection.
    Bretz JR, Mock NM, Charity JC, Zeyad S, Baker CJ, Hutcheson SW.
    Mol Microbiol; 2003 Jul 19; 49(2):389-400. PubMed ID: 12828637
    [Abstract] [Full Text] [Related]

  • 20. Chemoperception of Specific Amino Acids Controls Phytopathogenicity in Pseudomonas syringae pv. tomato.
    Cerna-Vargas JP, Santamaría-Hernando S, Matilla MA, Rodríguez-Herva JJ, Daddaoua A, Rodríguez-Palenzuela P, Krell T, López-Solanilla E.
    mBio; 2019 Oct 01; 10(5):. PubMed ID: 31575767
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.