These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 2184168
1. Microenvironmental contributions to the chromatographic behavior of subtilisin in hydrophobic-interaction and reversed-phase chromatography. Chicz RM, Regnier FE. J Chromatogr; 1990 Feb 02; 500():503-18. PubMed ID: 2184168 [Abstract] [Full Text] [Related]
2. Single amino acid contributions to protein retention in cation-exchange chromatography: resolution of genetically engineered subtilisin variants. Chicz RM, Regnier FE. Anal Chem; 1989 Sep 15; 61(18):2059-66. PubMed ID: 2679222 [Abstract] [Full Text] [Related]
3. Immobilized-metal affinity and hydroxyapatite chromatography of genetically engineered subtilisin. Chicz RM, Regnier FE. Anal Chem; 1989 Aug 01; 61(15):1742-9. PubMed ID: 2672879 [Abstract] [Full Text] [Related]
4. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants. Johansson K, Frederiksen SS, Degerman M, Breil MP, Mollerup JM, Nilsson B. J Chromatogr A; 2015 Feb 13; 1381():64-73. PubMed ID: 25595534 [Abstract] [Full Text] [Related]
6. Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using "thiol-ene click chemistry". Yang F, Bai Q, Zhao K, Gao D, Tian L. Anal Bioanal Chem; 2015 Feb 13; 407(6):1721-34. PubMed ID: 25543148 [Abstract] [Full Text] [Related]
7. Surface-mediated retention effects of subtilisin site-specific variants in cation-exchange chromatography. Chicz RM, Regnier FE. J Chromatogr; 1988 Jun 29; 443():193-203. PubMed ID: 3049647 [Abstract] [Full Text] [Related]
8. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation. Zhao K, Yang L, Wang X, Bai Q, Yang F, Wang F. Talanta; 2012 Aug 30; 98():86-94. PubMed ID: 22939132 [Abstract] [Full Text] [Related]
9. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins. Fausnaugh JL, Kennedy LA, Regnier FE. J Chromatogr; 1984 Dec 28; 317():141-55. PubMed ID: 6530430 [Abstract] [Full Text] [Related]
10. Preparation and characterization of a novel dual-retention mechanism mixed-mode stationary phase with PEG 400 and succinic anhydride as ligand for protein separation in WCX and HIC modes. Song C, Wang J, Zhao K, Bai Q. Biomed Chromatogr; 2013 Dec 28; 27(12):1741-53. PubMed ID: 23893694 [Abstract] [Full Text] [Related]
11. Differences in retention behavior between small and large molecules in ion-exchange chromatography and reversed-phase chromatography. Ekström B, Jacobson G. Anal Biochem; 1984 Oct 28; 142(1):134-9. PubMed ID: 6517308 [Abstract] [Full Text] [Related]
12. The role of protein structure in chromatographic behavior. Regnier FE. Science; 1987 Oct 16; 238(4825):319-23. PubMed ID: 3310233 [Abstract] [Full Text] [Related]
13. Correlation of calcitonin structure with chromatographic retention in high-performance liquid chromatography. Heinitz ML, Flanigan E, Orlowski RC, Regnier FE. J Chromatogr; 1988 Jun 29; 443():229-45. PubMed ID: 3170689 [Abstract] [Full Text] [Related]
14. Hydrophobic interaction chromatography of peptides as an alternative to reversed-phase chromatography. Alpert AJ. J Chromatogr; 1988 Jul 01; 444():269-74. PubMed ID: 3204135 [Abstract] [Full Text] [Related]
15. Mixed retention mechanism of proteins in weak anion-exchange chromatography. Liu P, Yang H, Geng X. J Chromatogr A; 2009 Oct 30; 1216(44):7497-504. PubMed ID: 19619880 [Abstract] [Full Text] [Related]
16. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry. Apfelthaler E, Bicker W, Lämmerhofer M, Sulyok M, Krska R, Lindner W, Schuhmacher R. J Chromatogr A; 2008 May 16; 1191(1-2):171-81. PubMed ID: 18199445 [Abstract] [Full Text] [Related]
17. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Aral H, Çelik KS, Altındağ R, Aral T. Talanta; 2017 Nov 01; 174():703-714. PubMed ID: 28738646 [Abstract] [Full Text] [Related]
18. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry. Zhao K, Yang F, Xia H, Wang F, Song Q, Bai Q. J Sep Sci; 2015 Mar 01; 38(5):703-10. PubMed ID: 25545916 [Abstract] [Full Text] [Related]
19. [Chromatographic behavior of basic drugs on thioether-embedded benzenesulfonate silica stationary phases]. Wang X, Chen L. Se Pu; 2018 Sep 08; 36(9):850-857. PubMed ID: 30251512 [Abstract] [Full Text] [Related]
20. Separation of highly charged (+5 to +10) amphipathic α-helical peptide standards by cation-exchange and reversed-phase high-performance liquid chromatography. Mant CT, Byars A, Ankarlo S, Jiang Z, Hodges RS. J Chromatogr A; 2018 Nov 02; 1574():60-70. PubMed ID: 30220427 [Abstract] [Full Text] [Related] Page: [Next] [New Search]