These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 21849502
1. Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the Gcn2 protein C terminus and inhibits Gcn2 activity. Visweswaraiah J, Lageix S, Castilho BA, Izotova L, Kinzy TG, Hinnebusch AG, Sattlegger E. J Biol Chem; 2011 Oct 21; 286(42):36568-79. PubMed ID: 21849502 [Abstract] [Full Text] [Related]
2. Domain II of the translation elongation factor eEF1A is required for Gcn2 kinase inhibition. Ramesh R, Sattlegger E. FEBS Lett; 2020 Jul 21; 594(14):2266-2281. PubMed ID: 32359173 [Abstract] [Full Text] [Related]
3. Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation. Visweswaraiah J, Lee SJ, Hinnebusch AG, Sattlegger E. J Biol Chem; 2012 Nov 02; 287(45):37757-68. PubMed ID: 22888004 [Abstract] [Full Text] [Related]
4. Translation elongation factor 1A mutants with altered actin bundling activity show reduced aminoacyl-tRNA binding and alter initiation via eIF2α phosphorylation. Perez WB, Kinzy TG. J Biol Chem; 2014 Jul 25; 289(30):20928-38. PubMed ID: 24936063 [Abstract] [Full Text] [Related]
5. Gcn1 contacts the small ribosomal protein Rps10, which is required for full activation of the protein kinase Gcn2. Lee SJ, Swanson MJ, Sattlegger E. Biochem J; 2015 Mar 15; 466(3):547-59. PubMed ID: 25437641 [Abstract] [Full Text] [Related]
6. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2{alpha} kinase GCN2 during amino acid starvation. Sattlegger E, Hinnebusch AG. J Biol Chem; 2005 Apr 22; 280(16):16514-21. PubMed ID: 15722345 [Abstract] [Full Text] [Related]
7. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress. Gupta R, Hinnebusch AG. Proc Natl Acad Sci U S A; 2023 Apr 18; 120(16):e2300521120. PubMed ID: 37043534 [Abstract] [Full Text] [Related]
8. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2. Marton MJ, Vazquez de Aldana CR, Qiu H, Chakraburtty K, Hinnebusch AG. Mol Cell Biol; 1997 Aug 18; 17(8):4474-89. PubMed ID: 9234705 [Abstract] [Full Text] [Related]
9. YIH1 is an actin-binding protein that inhibits protein kinase GCN2 and impairs general amino acid control when overexpressed. Sattlegger E, Swanson MJ, Ashcraft EA, Jennings JL, Fekete RA, Link AJ, Hinnebusch AG. J Biol Chem; 2004 Jul 16; 279(29):29952-62. PubMed ID: 15126500 [Abstract] [Full Text] [Related]
10. GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Marton MJ, Crouch D, Hinnebusch AG. Mol Cell Biol; 1993 Jun 16; 13(6):3541-56. PubMed ID: 8497269 [Abstract] [Full Text] [Related]
11. Interaction between the tRNA-binding and C-terminal domains of Yeast Gcn2 regulates kinase activity in vivo. Lageix S, Zhang J, Rothenburg S, Hinnebusch AG. PLoS Genet; 2015 Feb 16; 11(2):e1004991. PubMed ID: 25695491 [Abstract] [Full Text] [Related]
12. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG. EMBO J; 2000 Apr 17; 19(8):1887-99. PubMed ID: 10775272 [Abstract] [Full Text] [Related]
13. Budding yeast GCN1 binds the GI domain to activate the eIF2alpha kinase GCN2. Kubota H, Ota K, Sakaki Y, Ito T. J Biol Chem; 2001 May 18; 276(20):17591-6. PubMed ID: 11350982 [Abstract] [Full Text] [Related]
14. Evidence that Yih1 resides in a complex with ribosomes. Waller T, Lee SJ, Sattlegger E. FEBS J; 2012 May 18; 279(10):1761-76. PubMed ID: 22404850 [Abstract] [Full Text] [Related]
15. A genetic approach to identify amino acids in Gcn1 required for Gcn2 activation. Gottfried S, Koloamatangi SMBMJ, Daube C, Schiemann AH, Sattlegger E. PLoS One; 2022 May 18; 17(11):e0277648. PubMed ID: 36441697 [Abstract] [Full Text] [Related]
16. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. Sattlegger E, Hinnebusch AG. EMBO J; 2000 Dec 01; 19(23):6622-33. PubMed ID: 11101534 [Abstract] [Full Text] [Related]
17. A network of hydrophobic residues impeding helix alphaC rotation maintains latency of kinase Gcn2, which phosphorylates the alpha subunit of translation initiation factor 2. Gárriz A, Qiu H, Dey M, Seo EJ, Dever TE, Hinnebusch AG. Mol Cell Biol; 2009 Mar 01; 29(6):1592-607. PubMed ID: 19114556 [Abstract] [Full Text] [Related]
18. Evidence that Xrn1 is in complex with Gcn1, and is required for full levels of eIF2α phosphorylation. Shanmugam R, Anderson R, Schiemann AH, Sattlegger E. Biochem J; 2024 Apr 10; 481(7):481-498. PubMed ID: 38440860 [Abstract] [Full Text] [Related]
19. Methylglyoxal activates Gcn2 to phosphorylate eIF2alpha independently of the TOR pathway in Saccharomyces cerevisiae. Nomura W, Maeta K, Kita K, Izawa S, Inoue Y. Appl Microbiol Biotechnol; 2010 May 10; 86(6):1887-94. PubMed ID: 20077113 [Abstract] [Full Text] [Related]
20. A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Hueso G, Aparicio-Sanchis R, Montesinos C, Lorenz S, Murguía JR, Serrano R. Biochem J; 2012 Jan 01; 441(1):255-64. PubMed ID: 21919885 [Abstract] [Full Text] [Related] Page: [Next] [New Search]