These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


78 related items for PubMed ID: 21856889

  • 1. Microarray analysis reveals genes and functional networks relevant to the predisposition to inverted teats in pigs.
    Chomwisarutkun K, Murani E, Ponsuksili S, Wimmers K.
    J Anim Sci; 2012 Jan; 90(1):1-15. PubMed ID: 21856889
    [Abstract] [Full Text] [Related]

  • 2. QTL region-specific microarrays reveal differential expression of positional candidate genes of signaling pathways associated with the liability for the inverted teat defect.
    Chomwisarutkun K, Murani E, Brunner R, Ponsuksili S, Wimmers K.
    Anim Genet; 2013 Apr; 44(2):139-48. PubMed ID: 22690698
    [Abstract] [Full Text] [Related]

  • 3. Differential expression of growth factors and their receptors indicates their involvement in the inverted teat defect in pigs.
    Tetzlaff S, Murani E, Schellander K, Ponsuksili S, Wimmers K.
    J Anim Sci; 2009 Nov; 87(11):3451-7. PubMed ID: 19648501
    [Abstract] [Full Text] [Related]

  • 4. Association of parathyroid hormone-like hormone (PTHLH) and its receptor (PTHR1) with the number of functional and inverted teats in pigs.
    Tetzlaff S, Chomdej S, Jonas E, Ponsuksili S, Murani E, Phatsara C, Schellander K, Wimmers K.
    J Anim Breed Genet; 2009 Jun; 126(3):237-41. PubMed ID: 19646152
    [Abstract] [Full Text] [Related]

  • 5. [Mammary gland hypoplasia and aplasia (inverted nipples) in female and male swine. 1. Clinical-morphological investigations on the occurrence and development of inverted nipples in female and male swine of various age and production groups].
    Beilage E, Steffens S, Schoon HA, Bollwahn W.
    Tierarztl Prax; 1996 Feb; 24(1):31-5. PubMed ID: 8720952
    [Abstract] [Full Text] [Related]

  • 6. Gene expression analysis of mammary tissue during fetal bud formation and growth in two pig breeds--indications of prenatal initiation of postnatal phenotypic differences.
    Chomwisarutkun K, Murani E, Ponsuksili S, Wimmers K.
    BMC Dev Biol; 2012 Apr 26; 12():13. PubMed ID: 22537077
    [Abstract] [Full Text] [Related]

  • 7. Evidence for association of lymphoid enhancer-binding factor-1 (LEF1) with the number of functional and inverted teats in pigs.
    Tetzlaff S, Jonas E, Phatsara C, Murani E, Ponsuksili S, Schellander K, Wimmers K.
    Cytogenet Genome Res; 2009 Apr 26; 124(2):139-46. PubMed ID: 19420926
    [Abstract] [Full Text] [Related]

  • 8. Identification of novel candidate genes for the inverted teat defect in sows using a genome-wide marker panel.
    Chalkias H, Jonas E, Andersson LS, Jacobson M, de Koning DJ, Lundeheim N, Lindgren G.
    J Appl Genet; 2017 May 26; 58(2):249-259. PubMed ID: 28050760
    [Abstract] [Full Text] [Related]

  • 9. Mannan oligosaccharide modulates gene expression profile in pigs experimentally infected with porcine reproductive and respiratory syndrome virus.
    Che TM, Johnson RW, Kelley KW, Van Alstine WG, Dawson KA, Moran CA, Pettigrew JE.
    J Anim Sci; 2011 Oct 26; 89(10):3016-29. PubMed ID: 21622880
    [Abstract] [Full Text] [Related]

  • 10. Inverted teats (Mammillae invertitae) in gilts - effect on piglet survival and growth rate.
    Chalkias H, Ekman E, Lundeheim N, Rydhmer L, Jacobson M.
    J Anim Sci; 2014 Jun 26; 92(6):2587-94. PubMed ID: 24671590
    [Abstract] [Full Text] [Related]

  • 11. Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF.
    Hollborn M, Tenckhoff S, Jahn K, Iandiev I, Biedermann B, Schnurrbusch UE, Limb GA, Reichenbach A, Wolf S, Wiedemann P, Kohen L, Bringmann A.
    Mol Vis; 2005 Jun 10; 11():397-413. PubMed ID: 15988409
    [Abstract] [Full Text] [Related]

  • 12. Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis.
    Herrington EE, Ram TG, Salomon DS, Johnson GR, Gullick WJ, Kenney N, Hosick HL.
    J Cell Physiol; 1997 Jan 10; 170(1):47-56. PubMed ID: 9012784
    [Abstract] [Full Text] [Related]

  • 13. Effect of teat number, teat abnormalities and underline length on litter sizes and weights at 21 and 42 days in swine.
    Jungst SB, Kuhlers DL.
    J Anim Sci; 1983 Oct 10; 57(4):802-6. PubMed ID: 6643297
    [Abstract] [Full Text] [Related]

  • 14. Region-specific expression of androgen and growth factor pathway genes in the rat epididymis and the effects of dual 5alpha-reductase inhibition.
    Henderson NA, Cooke GM, Robaire B.
    J Endocrinol; 2006 Sep 10; 190(3):779-91. PubMed ID: 17003279
    [Abstract] [Full Text] [Related]

  • 15. Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways.
    Wang Y, Middleton F, Horton JA, Reichel L, Farnum CE, Damron TA.
    Bone; 2004 Dec 10; 35(6):1273-93. PubMed ID: 15589209
    [Abstract] [Full Text] [Related]

  • 16. Ontogenic and nutritional regulation of steroid receptor and IGF-I transcript abundance in the prepubertal heifer mammary gland.
    Meyer MJ, Rhoads RP, Capuco AV, Connor EE, Hummel A, Boisclair YR, Van Amburgh ME.
    J Endocrinol; 2007 Oct 10; 195(1):59-66. PubMed ID: 17911397
    [Abstract] [Full Text] [Related]

  • 17. Udder characteristics of importance for teat use in purebred and crossbred pigs.
    Ocepek M, Andersen-Ranberg I, Edwards SA, Andersen IL.
    J Anim Sci; 2016 Feb 10; 94(2):780-8. PubMed ID: 27065148
    [Abstract] [Full Text] [Related]

  • 18. Increased platelet-activating factor receptor gene expression by corneal epithelial wound healing.
    Ma X, Bazan HE.
    Invest Ophthalmol Vis Sci; 2000 Jun 10; 41(7):1696-702. PubMed ID: 10845588
    [Abstract] [Full Text] [Related]

  • 19. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis.
    Kettunen P, Laurikkala J, Itäranta P, Vainio S, Itoh N, Thesleff I.
    Dev Dyn; 2000 Nov 10; 219(3):322-32. PubMed ID: 11066089
    [Abstract] [Full Text] [Related]

  • 20. Gene expression profiling of porcine peripheral blood leukocytes after infection with Actinobacillus pleuropneumoniae.
    Moser RJ, Reverter A, Lehnert SA.
    Vet Immunol Immunopathol; 2008 Feb 15; 121(3-4):260-74. PubMed ID: 18054086
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.