These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


302 related items for PubMed ID: 21857516

  • 1. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study.
    Nakajima HH, Pisano DV, Roosli C, Hamade MA, Merchant GR, Mahfoud L, Halpin CF, Rosowski JJ, Merchant SN.
    Ear Hear; 2012; 33(1):35-43. PubMed ID: 21857516
    [Abstract] [Full Text] [Related]

  • 2. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults.
    Rosowski JJ, Nakajima HH, Hamade MA, Mahfoud L, Merchant GR, Halpin CF, Merchant SN.
    Ear Hear; 2012; 33(1):19-34. PubMed ID: 21857517
    [Abstract] [Full Text] [Related]

  • 3. The Audiometric and Mechanical Effects of Partial Ossicular Discontinuity.
    Farahmand RB, Merchant GR, Lookabaugh SA, Röösli C, Ulku CH, McKenna MJ, de Venecia RK, Halpin CF, Rosowski JJ, Nakajima HH.
    Ear Hear; 2016; 37(2):206-15. PubMed ID: 26510125
    [Abstract] [Full Text] [Related]

  • 4. Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane.
    Rosowski JJ, Mehta RP, Merchant SN.
    Otol Neurotol; 2003 Mar; 24(2):165-75. PubMed ID: 12621328
    [Abstract] [Full Text] [Related]

  • 5. Superior semicircular canal dehiscence presenting as conductive hearing loss without vertigo.
    Mikulec AA, McKenna MJ, Ramsey MJ, Rosowski JJ, Herrmann BS, Rauch SD, Curtin HD, Merchant SN.
    Otol Neurotol; 2004 Mar; 25(2):121-9. PubMed ID: 15021770
    [Abstract] [Full Text] [Related]

  • 6. Preoperative evaluation of ossicular chain abnormality in patients with conductive deafness without perforation of the tympanic membrane.
    Tabuchi K, Murashita H, Okubo H, Takahashi K, Wada T, Hara A.
    Arch Otolaryngol Head Neck Surg; 2005 Aug; 131(8):686-9. PubMed ID: 16103299
    [Abstract] [Full Text] [Related]

  • 7. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations.
    Merchant GR, Merchant SN, Rosowski JJ, Nakajima HH.
    Hear Res; 2016 Nov; 341():19-30. PubMed ID: 27496538
    [Abstract] [Full Text] [Related]

  • 8. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J, Zenner HP, Hemmert W, Burkhardt C, Gummer AW.
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [Abstract] [Full Text] [Related]

  • 9. Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears.
    Rosowski JJ, Nakajima HH, Merchant SN.
    Ear Hear; 2008 Jan; 29(1):3-19. PubMed ID: 18091103
    [Abstract] [Full Text] [Related]

  • 10. [Analyses of the clinical characteristics of unilateral conductive hearing loss with intact tympanic membrane].
    Tang C, Zhang J, Han W, Shen W, Liu J, Hou Z, Dai P, Yang S, Han D.
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 May; 51(5):348-54. PubMed ID: 27220294
    [Abstract] [Full Text] [Related]

  • 11. Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal.
    Chien W, Ravicz ME, Rosowski JJ, Merchant SN.
    Otol Neurotol; 2007 Feb; 28(2):250-7. PubMed ID: 17255894
    [Abstract] [Full Text] [Related]

  • 12. Toward Automating Diagnosis of Middle- and Inner-ear Mechanical Pathologies With a Wideband Absorbance Regression Model.
    Eberhard KE, Merchant GR, Nakajima HH, Neely ST.
    Ear Hear; 2007 Feb; 45(5):1241-1251. PubMed ID: 38797886
    [Abstract] [Full Text] [Related]

  • 13. Automatic Prediction of Conductive Hearing Loss Using Video Pneumatic Otoscopy and Deep Learning Algorithm.
    Byun H, Park CJ, Oh SJ, Chung MJ, Cho BH, Cho YS.
    Ear Hear; 2007 Feb; 43(5):1563-1573. PubMed ID: 35344974
    [Abstract] [Full Text] [Related]

  • 14. Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory.
    Piskorski P, Keefe DH, Simmons JL, Gorga MP.
    J Acoust Soc Am; 1999 Mar; 105(3):1749-64. PubMed ID: 10089599
    [Abstract] [Full Text] [Related]

  • 15. Dehiscence of bone overlying the superior canal as a cause of apparent conductive hearing loss.
    Minor LB, Carey JP, Cremer PD, Lustig LR, Streubel SO, Ruckenstein MJ.
    Otol Neurotol; 2003 Mar; 24(2):270-8. PubMed ID: 12621343
    [Abstract] [Full Text] [Related]

  • 16. Clinical, experimental, and theoretical investigations of the effect of superior semicircular canal dehiscence on hearing mechanisms.
    Rosowski JJ, Songer JE, Nakajima HH, Brinsko KM, Merchant SN.
    Otol Neurotol; 2004 May; 25(3):323-32. PubMed ID: 15129113
    [Abstract] [Full Text] [Related]

  • 17. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone.
    Feeney MP, Grant IL, Mills DM.
    Ear Hear; 2009 Aug; 30(4):391-400. PubMed ID: 19424071
    [Abstract] [Full Text] [Related]

  • 18. Interaural multiple frequency tympanometry measures: clinical utility for unilateral conductive hearing loss.
    Norrix LW, Burgan B, Ramirez N, Velenovsky DS.
    J Am Acad Audiol; 2013 Mar; 24(3):231-40. PubMed ID: 23506667
    [Abstract] [Full Text] [Related]

  • 19. Wideband absorbance pattern in adults with otosclerosis and ossicular chain discontinuity.
    Karuppannan A, Barman A.
    Auris Nasus Larynx; 2021 Aug; 48(4):583-589. PubMed ID: 33187789
    [Abstract] [Full Text] [Related]

  • 20. Assessment of ear disorders using power reflectance.
    Nakajima HH, Rosowski JJ, Shahnaz N, Voss SE.
    Ear Hear; 2013 Jul; 34 Suppl 1(7 0 1):48S-53S. PubMed ID: 23900180
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.