These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
326 related items for PubMed ID: 21863454
1. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis. Czarnecki O, Peter E, Grimm B. Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454 [Abstract] [Full Text] [Related]
2. Regulation of tetrapyrrole biosynthesis in higher plants. Moulin M, Smith AG. Biochem Soc Trans; 2005 Aug; 33(Pt 4):737-42. PubMed ID: 16042589 [Abstract] [Full Text] [Related]
7. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B. Planta; 2006 Aug; 224(3):700-9. PubMed ID: 16506064 [Abstract] [Full Text] [Related]
8. FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K. Proc Natl Acad Sci U S A; 2001 Oct 23; 98(22):12826-31. PubMed ID: 11606728 [Abstract] [Full Text] [Related]
9. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall'Osto L, Carrière F, Bassi R, Grimm B, Nussaume L, Havaux M. Plant J; 2007 Jun 23; 50(5):795-809. PubMed ID: 17553115 [Abstract] [Full Text] [Related]
10. GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. Peter E, Grimm B. Mol Plant; 2009 Nov 23; 2(6):1198-210. PubMed ID: 19995725 [Abstract] [Full Text] [Related]
11. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level. Apitz J, Schmied J, Lehmann MJ, Hedtke B, Grimm B. Plant Cell Physiol; 2014 Mar 23; 55(3):645-57. PubMed ID: 24449654 [Abstract] [Full Text] [Related]
12. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Czarnecki O, Grimm B. J Exp Bot; 2012 Feb 23; 63(4):1675-87. PubMed ID: 22231500 [Abstract] [Full Text] [Related]
16. Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Richter A, Peter E, Pörs Y, Lorenzen S, Grimm B, Czarnecki O. Plant Cell Physiol; 2010 May 23; 51(5):670-81. PubMed ID: 20375109 [Abstract] [Full Text] [Related]
17. Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue. Hedtke B, Alawady A, Albacete A, Kobayashi K, Melzer M, Roitsch T, Masuda T, Grimm B. Plant Mol Biol; 2012 Jan 23; 78(1-2):77-93. PubMed ID: 22081402 [Abstract] [Full Text] [Related]
18. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis. Wang P, Ji S, Grimm B. J Exp Bot; 2022 Aug 11; 73(14):4624-4636. PubMed ID: 35536687 [Abstract] [Full Text] [Related]
19. Two chloroplast-localized MORF proteins act as chaperones to maintain tetrapyrrole biosynthesis. Yuan J, Ma T, Ji S, Hedtke B, Grimm B, Lin R. New Phytol; 2022 Sep 11; 235(5):1868-1883. PubMed ID: 35615903 [Abstract] [Full Text] [Related]
20. Travelling wave ion mobility mass spectrometry of 5-aminolaevulinic acid, porphobilinogen and porphyrins. Benton CM, Lim CK, Moniz C, Jones DJ. Rapid Commun Mass Spectrom; 2012 Feb 29; 26(4):480-6. PubMed ID: 22279024 [Abstract] [Full Text] [Related] Page: [Next] [New Search]