These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 21865521

  • 1. Subglottal pressure and fundamental frequency control in contact calls of juvenile Alligator mississippiensis.
    Riede T, Tokuda IT, Farmer CG.
    J Exp Biol; 2011 Sep 15; 214(Pt 18):3082-95. PubMed ID: 21865521
    [Abstract] [Full Text] [Related]

  • 2. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production.
    Riede T, Li Z, Tokuda IT, Farmer CG.
    J Exp Biol; 2015 Apr 15; 218(Pt 7):991-8. PubMed ID: 25657203
    [Abstract] [Full Text] [Related]

  • 3. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization.
    Riede T.
    J Neurophysiol; 2011 Nov 15; 106(5):2580-92. PubMed ID: 21832032
    [Abstract] [Full Text] [Related]

  • 4. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB, Engebretson AM, Vemula NR.
    J Acoust Soc Am; 1978 Jul 15; 64(1):65-80. PubMed ID: 712003
    [Abstract] [Full Text] [Related]

  • 5. Interactions of subglottal pressure and neuromuscular activation on fundamental frequency and intensity.
    Chhetri DK, Park SJ.
    Laryngoscope; 2016 May 15; 126(5):1123-30. PubMed ID: 26971707
    [Abstract] [Full Text] [Related]

  • 6. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X, Wang J, Devine EE, Wang Y, Zhong H, Courtright MR, Zhou L, Zhuang P, Jiang JJ.
    J Voice; 2017 Jan 15; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [Abstract] [Full Text] [Related]

  • 7. The acoustical role of vocal tract in the horseshoe bat, Rhinolophus pusillus.
    Ma X, Li T, Lu H.
    J Acoust Soc Am; 2016 Mar 15; 139(3):1264-71. PubMed ID: 27036262
    [Abstract] [Full Text] [Related]

  • 8. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT, Hess M, Müller F, Švec JG, Sundberg J.
    J Voice; 2015 Jul 15; 29(4):391-402. PubMed ID: 25944295
    [Abstract] [Full Text] [Related]

  • 9. A Chinese alligator in heliox: formant frequencies in a crocodilian.
    Reber SA, Nishimura T, Janisch J, Robertson M, Fitch WT.
    J Exp Biol; 2015 Aug 15; 218(Pt 15):2442-7. PubMed ID: 26246611
    [Abstract] [Full Text] [Related]

  • 10. A cervid vocal fold model suggests greater glottal efficiency in calling at high frequencies.
    Titze IR, Riede T.
    PLoS Comput Biol; 2010 Aug 19; 6(8):. PubMed ID: 20808882
    [Abstract] [Full Text] [Related]

  • 11. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework.
    Gómez P, Schützenberger A, Kniesburges S, Bohr C, Döllinger M.
    Biomech Model Mechanobiol; 2018 Jun 19; 17(3):777-792. PubMed ID: 29230589
    [Abstract] [Full Text] [Related]

  • 12. Vocal power and pressure-flow relationships in excised tiger larynges.
    Titze IR, Fitch WT, Hunter EJ, Alipour F, Montequin D, Armstrong DL, McGee J, Walsh EJ.
    J Exp Biol; 2010 Nov 15; 213(Pt 22):3866-73. PubMed ID: 21037066
    [Abstract] [Full Text] [Related]

  • 13. Intraglottal pressure distribution computed from empirical velocity data in canine larynx.
    Oren L, Khosla S, Gutmark E.
    J Biomech; 2014 Apr 11; 47(6):1287-93. PubMed ID: 24636531
    [Abstract] [Full Text] [Related]

  • 14. Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization.
    Riede T.
    J Exp Zool A Ecol Genet Physiol; 2013 Apr 11; 319(4):213-24. PubMed ID: 23423862
    [Abstract] [Full Text] [Related]

  • 15. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z.
    J Acoust Soc Am; 2015 Feb 11; 137(2):898-910. PubMed ID: 25698022
    [Abstract] [Full Text] [Related]

  • 16. A methodological study of hemilaryngeal phonation.
    Jiang JJ, Titze IR.
    Laryngoscope; 1993 Aug 11; 103(8):872-82. PubMed ID: 8361290
    [Abstract] [Full Text] [Related]

  • 17. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R, Bao H, Xu X, Piotrowski D, Zhang Y, Zhuang P.
    J Voice; 2018 Jul 11; 32(4):396-402. PubMed ID: 28826980
    [Abstract] [Full Text] [Related]

  • 18. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY, Solomon NP, Luschei ES, Titze IR, Liu K, Fu TC, Hsu MM.
    Ann Otol Rhinol Laryngol; 1994 Oct 11; 103(10):817-21. PubMed ID: 7944175
    [Abstract] [Full Text] [Related]

  • 19. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC, Lourenço K, Hermant N, Van Hirtum A, Pelorson X.
    J Acoust Soc Am; 2012 Jul 11; 132(1):403-11. PubMed ID: 22779487
    [Abstract] [Full Text] [Related]

  • 20. On subglottal formant analysis.
    Cranen B, Boves L.
    J Acoust Soc Am; 1987 Mar 11; 81(3):734-46. PubMed ID: 3584682
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.