These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 21867219
1. Oscillatory tank-treading motion of erythrocytes in shear flows. Dodson WR, Dimitrakopoulos P. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219 [Abstract] [Full Text] [Related]
2. Tank-treading of swollen erythrocytes in shear flows. Dodson WR, Dimitrakopoulos P. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021922. PubMed ID: 22463259 [Abstract] [Full Text] [Related]
3. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling. Dodson WR, Dimitrakopoulos P. Biophys J; 2010 Nov 03; 99(9):2906-16. PubMed ID: 21044588 [Abstract] [Full Text] [Related]
4. Tank-treading and tumbling frequencies of capsules and red blood cells. Yazdani AZ, Kalluri RM, Bagchi P. Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr 03; 83(4 Pt 2):046305. PubMed ID: 21599293 [Abstract] [Full Text] [Related]
5. Dynamic modes of red blood cells in oscillatory shear flow. Noguchi H. Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun 03; 81(6 Pt 1):061920. PubMed ID: 20866453 [Abstract] [Full Text] [Related]
6. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K, Wada S, Liu H. Biomech Model Mechanobiol; 2014 Aug 03; 13(4):735-46. PubMed ID: 24104211 [Abstract] [Full Text] [Related]
7. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Skotheim JM, Secomb TW. Phys Rev Lett; 2007 Feb 16; 98(7):078301. PubMed ID: 17359066 [Abstract] [Full Text] [Related]
8. Numerical approach to the motion of a red blood cell in Couette flow. Sugihara M, Niimi H. Biorheology; 1984 Feb 16; 21(6):735-49. PubMed ID: 6518286 [Abstract] [Full Text] [Related]
9. Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank-treading in shear flows. Oulaid O, Saad AK, Aires PS, Zhang J. Comput Methods Biomech Biomed Engin; 2016 Feb 16; 19(6):648-62. PubMed ID: 26158788 [Abstract] [Full Text] [Related]
10. Dynamics of a single red blood cell in simple shear flow. Sinha K, Graham MD. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct 16; 92(4):042710. PubMed ID: 26565275 [Abstract] [Full Text] [Related]
11. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow. Kim Y, Lai MC. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec 16; 86(6 Pt 2):066321. PubMed ID: 23368052 [Abstract] [Full Text] [Related]
12. Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Noguchi H, Gompper G. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul 16; 72(1 Pt 1):011901. PubMed ID: 16089995 [Abstract] [Full Text] [Related]
13. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Tran-Son-Tay R, Sutera SP, Rao PR. Biophys J; 1984 Jul 16; 46(1):65-72. PubMed ID: 6743758 [Abstract] [Full Text] [Related]
14. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading. Malipeddi AR, Sarkar K. Soft Matter; 2021 Sep 29; 17(37):8523-8535. PubMed ID: 34499062 [Abstract] [Full Text] [Related]
15. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow. Fischer TM, Korzeniewski R. Cytometry A; 2011 Nov 29; 79(11):946-51. PubMed ID: 22015732 [Abstract] [Full Text] [Related]
16. Swinging of red blood cells under shear flow. Abkarian M, Faivre M, Viallat A. Phys Rev Lett; 2007 May 04; 98(18):188302. PubMed ID: 17501614 [Abstract] [Full Text] [Related]
17. Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium. Fischer TM. Biophys J; 2007 Oct 01; 93(7):2553-61. PubMed ID: 17545241 [Abstract] [Full Text] [Related]
18. Similar but Distinct Roles of Membrane and Interior Fluid Viscosities in Capsule Dynamics in Shear Flows. Li P, Zhang J. Cardiovasc Eng Technol; 2021 Apr 01; 12(2):232-249. PubMed ID: 33483917 [Abstract] [Full Text] [Related]
19. Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium. Fischer TM, Korzeniewski R. Biophys J; 2015 Mar 24; 108(6):1352-1360. PubMed ID: 25809249 [Abstract] [Full Text] [Related]
20. Tank treading of optically trapped red blood cells in shear flow. Basu H, Dharmadhikari AK, Dharmadhikari JA, Sharma S, Mathur D. Biophys J; 2011 Oct 05; 101(7):1604-12. PubMed ID: 21961586 [Abstract] [Full Text] [Related] Page: [Next] [New Search]