These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment. Lee J, Lee TK. J Microbiol Biotechnol; 2016 Jan; 26(1):120-9. PubMed ID: 26502734 [Abstract] [Full Text] [Related]
5. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons. Atashgahi S, Maphosa F, De Vrieze J, Haest PJ, Boon N, Smidt H, Springael D, Dejonghe W. Appl Microbiol Biotechnol; 2014 Mar; 98(5):2255-66. PubMed ID: 23955471 [Abstract] [Full Text] [Related]
6. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW. Environ Sci Technol; 2002 Dec 01; 36(23):5106-16. PubMed ID: 12523427 [Abstract] [Full Text] [Related]
10. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. DiStefano TD, Gossett JM, Zinder SH. Appl Environ Microbiol; 1991 Aug 01; 57(8):2287-92. PubMed ID: 1768101 [Abstract] [Full Text] [Related]
11. Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1. Miller GS, Milliken CE, Sowers KR, May HD. Environ Sci Technol; 2005 Apr 15; 39(8):2631-5. PubMed ID: 15884359 [Abstract] [Full Text] [Related]
13. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer. Bunge M, Kleikemper J, Miniaci C, Duc L, Muusse MG, Hause G, Zeyer J. Appl Microbiol Biotechnol; 2007 Oct 15; 76(6):1447-56. PubMed ID: 17768618 [Abstract] [Full Text] [Related]
14. Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting. Karataş S, Hasar H, Taşkan E, Özkaya B, Şahinkaya E. Water Res; 2014 Jul 01; 58():21-8. PubMed ID: 24731873 [Abstract] [Full Text] [Related]
15. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE. Environ Sci Technol; 2002 Sep 15; 36(18):3945-52. PubMed ID: 12269747 [Abstract] [Full Text] [Related]
16. Reductive dechlorination of tetrachloroethene in marine sediments: Biodiversity and dehalorespiring capabilities of the indigenous microbes. Matturro B, Presta E, Rossetti S. Sci Total Environ; 2016 Mar 01; 545-546():445-52. PubMed ID: 26748009 [Abstract] [Full Text] [Related]
17. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Kim BH, Baek KH, Cho DH, Sung Y, Koh SC, Ahn CY, Oh HM, Kim HS. Biotechnol Lett; 2010 Dec 01; 32(12):1829-35. PubMed ID: 20714784 [Abstract] [Full Text] [Related]
18. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column. Azizian MF, Semprini L. J Contam Hydrol; 2016 Jul 01; 190():58-68. PubMed ID: 27183341 [Abstract] [Full Text] [Related]
19. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions. Marcet TF, Cápiro NL, Yang Y, Löffler FE, Pennell KD. Water Res; 2018 Nov 15; 145():21-29. PubMed ID: 30114555 [Abstract] [Full Text] [Related]
20. Biologically-enhanced removal of PCE from NAPL source zones. Cope N, Hughes JB. Environ Sci Technol; 2001 May 15; 35(10):2014-21. PubMed ID: 11393982 [Abstract] [Full Text] [Related] Page: [Next] [New Search]