These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 21877746
1. Mechanisms of tannin-induced trypsin inhibition: a molecular approach. Gonçalves R, Mateus N, Pianet I, Laguerre M, de Freitas V. Langmuir; 2011 Nov 01; 27(21):13122-9. PubMed ID: 21877746 [Abstract] [Full Text] [Related]
2. Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. Gonçalves R, Mateus N, De Freitas V. J Agric Food Chem; 2011 Nov 09; 59(21):11794-802. PubMed ID: 21950419 [Abstract] [Full Text] [Related]
3. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. Cala O, Pinaud N, Simon C, Fouquet E, Laguerre M, Dufourc EJ, Pianet I. FASEB J; 2010 Nov 09; 24(11):4281-90. PubMed ID: 20605948 [Abstract] [Full Text] [Related]
4. Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach. Li X, Geng M. Int J Biol Macromol; 2016 Apr 09; 85():168-78. PubMed ID: 26740464 [Abstract] [Full Text] [Related]
5. Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition. Ottaviani JI, Actis-Goretta L, Villordo JJ, Fraga CG. Biochimie; 2006 Apr 09; 88(3-4):359-65. PubMed ID: 16330143 [Abstract] [Full Text] [Related]
6. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Cala O, Dufourc EJ, Fouquet E, Manigand C, Laguerre M, Pianet I. Langmuir; 2012 Dec 18; 28(50):17410-8. PubMed ID: 23173977 [Abstract] [Full Text] [Related]
7. Biological relevance of the interaction between procyanidins and trypsin: a multitechnique approach. Gonçalves R, Mateus N, de Freitas V. J Agric Food Chem; 2010 Nov 24; 58(22):11924-31. PubMed ID: 21047067 [Abstract] [Full Text] [Related]
8. Modeling procyanidin self-association processes and understanding their micellar organization: a study by diffusion NMR and molecular mechanics. Pianet I, André Y, Ducasse MA, Tarascou I, Lartigue JC, Pinaud N, Fouquet E, Dufourc EJ, Laguerre M. Langmuir; 2008 Oct 07; 24(19):11027-35. PubMed ID: 18767820 [Abstract] [Full Text] [Related]
9. Modulation of MPP+ uptake by procyanidins in Caco-2 cells: involvement of oxidation/reduction reactions. Faria A, Mateus N, de Freitas V, Calhau C. FEBS Lett; 2006 Jan 09; 580(1):155-60. PubMed ID: 16364314 [Abstract] [Full Text] [Related]
10. Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Brandão E, Santos Silva M, García-Estévez I, Mateus N, de Freitas V, Soares S. Food Chem; 2017 Aug 01; 228():427-434. PubMed ID: 28317744 [Abstract] [Full Text] [Related]
11. Molecular interaction between pectin and catechin/procyanidin in simulative juice model: Insights from spectroscopic, morphology, and antioxidant activity. Liang T, Jiao S, Jing P. J Food Sci; 2021 Jun 01; 86(6):2445-2456. PubMed ID: 33963549 [Abstract] [Full Text] [Related]
12. Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. Dai T, Chen J, McClements DJ, Li T, Liu C. Int J Biol Macromol; 2019 Jun 01; 130():315-322. PubMed ID: 30794902 [Abstract] [Full Text] [Related]
13. Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates. Liang M, Liu R, Qi W, Su R, Yu Y, Wang L, He Z. Food Chem; 2013 Jun 01; 138(2-3):1596-603. PubMed ID: 23411286 [Abstract] [Full Text] [Related]
14. Comparative Study of the Interactions between Ovalbumin and five Antioxidants by Spectroscopic Methods. Li X, Yan Y. J Fluoresc; 2017 Jan 01; 27(1):213-225. PubMed ID: 27722919 [Abstract] [Full Text] [Related]
15. Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159. Yu J, Yan F, Lu Q, Liu R. Food Res Int; 2018 Oct 01; 112():152-159. PubMed ID: 30131122 [Abstract] [Full Text] [Related]
16. Unravelling the effects of procyanidin on gliadin digestion and immunogenicity. Ricardo D, Telmo F, Catarina BP, Nuno M, Victor F, Rosa PG. Food Funct; 2021 May 21; 12(10):4434-4445. PubMed ID: 33881102 [Abstract] [Full Text] [Related]
17. A 3D structural and conformational study of procyanidin dimers in water and hydro-alcoholic media as viewed by NMR and molecular modeling. Tarascou I, Barathieu K, Simon C, Ducasse MA, André Y, Fouquet E, Dufourc EJ, de Freitas V, Laguerre M, Pianet I. Magn Reson Chem; 2006 Sep 21; 44(9):868-80. PubMed ID: 16791908 [Abstract] [Full Text] [Related]
18. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability. Perez-Gregorio MR, Mateus N, De Freitas V. J Agric Food Chem; 2014 Oct 15; 62(41):10038-45. PubMed ID: 25248720 [Abstract] [Full Text] [Related]
19. Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation. Dai T, Chen J, Li Q, Li P, Hu P, Liu C, Li T. Int J Biol Macromol; 2018 Jul 01; 113():427-433. PubMed ID: 29408006 [Abstract] [Full Text] [Related]
20. A study of procyanidin binding to Histatin 5 using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS) and molecular simulations. Shraberg J, Rick SW, Rannulu N, Cole RB. Phys Chem Chem Phys; 2015 May 14; 17(18):12247-58. PubMed ID: 25893227 [Abstract] [Full Text] [Related] Page: [Next] [New Search]